Several notes on the melting behavior of mesoporous materials
A.V. Shishulin1,2, A.V. Shishulina3, A.V. Kuptsov3
1 Russian Presidential Academy of National Economy and Public Administration
2 Pleiades Publ. Ltd.
3 R.E. Alekseev Nizhny Novgorod State Technical University
DOI: 10.26456/pcascnn/2024.16.427
Short communication
Abstract: In this paper, the melting temperature dependence on geometric characteristics (volume and shape) of pores distributed in the mesoporous material has been analyzed. The pore geometry has been determined in the framework of the fractal-geometry approach using the values of their effective diameter and fractal dimension. The obtained results demonstrate that the well-known effect (being characteristic of nanoscale particles), which consists in a significant dependence of the melting temperature on the size and shape of a particle, can also be realized in mesoporous materials (the pore size being from 5 up to 50 nm) while the mesoporous materials themselves can be of macroscopic dimensions. Using the example of mesoporous lead, it has been shown the reducing the pore size and «complicating» the pore shape result in a significant decrease in the melting temperature of a material. The results have been obtained using the cohesive energy-based model, being verified experimentally for lead nanoparticles.
Keywords: phase transitions, melting, mesoporous materials, fractal dimension, cohesion
- Alexander V. Shishulin – Ph. D., Senior Lecturer, Russian Presidential Academy of National Economy and Public Administration, Technical Editor Pleiades Publ. Ltd.
- Anna V. Shishulina – Ph. D., Associate Professor, R.E. Alekseev Nizhny Novgorod State Technical University
- Alexey V. Kuptsov – 1st year graduate student, R.E. Alekseev Nizhny Novgorod State Technical University
Reference:
Shishulin, A.V. Several notes on the melting behavior of mesoporous materials / A.V. Shishulin, A.V. Shishulina, A.V. Kuptsov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 427-436. DOI: 10.26456/pcascnn/2024.16.427. (In Russian).
Full article (in Russian): download PDF file
References:
1. Andriyevskiy R.A. Ragulya A.V. Nanostrukturnyye materialy [Nanostructured materials]. Moscow, Akademiya Publ., 2005. 192 p. (In Russian)
2. Gladkikh N.T., Dukarov S.V., Kryshtal’ A.P. et al. Poverkhnostnyje javlenija i fazovyje prevraschenija v kondensirovannykh plenkakh [Surface phenomena and phase transitions in condensed thin films]. Kharkiv, V. N. Karazin Kharkiv National University Publ., 2004, 276 p. (In Russian).
3. Samsonov V.M., Vasilyev S.A., Nebyvalova K.K. et al. Melting temperature and binding energy of metal nanoparticles: size dependences, interrelation between them, and some correlations with structural stability of nanoclusters, Journal of Nanoparticle Research, 2020, vol. 22, art. no. 247, 15 p. DOI: 10.1007/s11051-020-04923-6.
4. Rawat K., Goyal M. Theoretical analysis of thermophysical properties of nanomaterials, Materials Today: Proceedings, 2021, vol. 43, part 2, pp. 1210-1214. DOI: 10.1016/j.matpr.2020.08.754.
5. Sachin, Pandey B.K., Jaiswal R.L. Dimensional effect on cohesive energy, melting temperature and Debye temperature of metallic nanoparticles, Physica B: Condensed Matter, 2023, vol. 651, art. no. 414602, 8 p. DOI: 10.1016/j.physb.2022.414602.
6. Mendoza-Pérez R., Muhl S. Phase diagrams of refractory bimetallic nanoalloys, Journal of Nanoparticle Research, 2020, vol. 22, art. no. 306, 15 p. DOI: 10.1007/s11051-020-05035-x.
7. Shirinyan A., Wilde G., Bilogorodskyy Y. Melting loops in the phase diagram of individual nanoscale alloy particles: completely miscible Cu-Ni alloys as a model system, Journal of Materials Science, 2020, vol. 55, issue 27, pp. 12385-12402. DOI: 10.1007/s10853-020-04812-2.
8. Talyzin I.V., Kartoshkin A.Yu., Vasilyev S.A. et al. O fazovoj diagramme nanosplava Au-Si: molekulyarno-dinamicheskoe i termodinamicheskoe modelirovanie [On phase diagram of Au-Si nanoalloy: molecular dynamics and thermodynamic simulation], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostructur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 364-373. DOI: 10.26456/pcascnn/2019.11.364 (in Russian).
9. Shishulin A.V., Shishulina A.V. Nekotorye osobennosti vysokotemperaturnykh fazovykh ravnovesij v nanochastitsakh sistemy Six-Ge1-x [Several peculiarities of high-temperature phase equilibria in nanoparticles of the Six-Ge1-x system], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostructur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 268-276. DOI: 10.26456/pcascnn/2019.11.268 (In Russian).
10. Shishulin A.V., Fedoseev V.B. Effect of initial composition on the liquid-solid phase transition in Cr-W alloy nanoparticles, Inorganic Materials, 2019, vol. 55, issue 1, pp. 14-18. DOI: 10.1134/S0020168519010138.
11. Shishulin A.V., Potapov A.A., Shishulina A.V. The initial composition as an additional parameter determining the melting behaviour of nanoparticles (a case study on Six-Ge1-x alloys), Eurasian Physical Technical Journal, 2021, vol. 18, issue 4(38), pp. 5-13. DOI: 10.31489/2021No4/5-13.
12. Shishulin A.V., Shishulina A.V. Vliyanie iskhodnogo sostava na fazovye ravnovesiya pri tverdofaznom rasslaivanii v nanochastitsakh binarnykh splavov (na primere sistemy W-Cr) [Influence of the initial composition on the phase equilibria in the case of the solid phase separation in binary alloy nanoparticles (exemplifying on the W-Cr system)], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 299-307. DOI: 10.26456/pcascnn/2023.15.299 (In Russian).
13. Shishulin A.V., Fedoseev V.B., Shishulina A.V. O vlijanii vneshnej sredy na fazovyje ravnovesiya v sisteme malogo ob’ema na primire raspada tverdogo rastvora Bi-Sb [Environment-dependent phase equilibria in a small-volume system in the case of the decomposition of Bi-Sb solid solutions], Butlerovskiye soobscheniya [Butlerov Communications], 2017, vol. 51, issue 7, pp. 31-37 (In Russian).
14. Sdobnyakov N.Yu, Kolosov A.Yu, Sokolov D.N. et al. Kompleksnyj podkhod k modelirovaniyu plavleniya i kristallizatsii v pyatikomponentnykh metallicheskikh nanochastitsakh: molekulyarnaya dinamika i metod Monte- Karlo [Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 589-601. DOI: 10.26456/pcascnn/2023.15.589 (in Russian).
15. Bogdanov S.S., Sdobnyakov N.Yu. Zakonomernosti strukturoobrazovaniya v binarnykh nanochastitsakh GTsK-metallov pri termicheskom vozdejstvii: atomisticheskoe modelirovanie [Patterns of structure formation in binary nanoparticles of FCC metals under thermal exposure: atomistic simulation]. Tver, Tver State University Publ., 2023, 144 p. DOI: 10.26456/bs.2023.144. (In Russian).
16. Samsonov V.M., Demenkov D.E., Karacharov V.I., Bembel’ A.G. Fluctuation approach to the problem of thermodynamics’ applicability to nanoparticles, Bulletin of the Russian Academy of Sciences: Physics, 2011, vol. 75, issue 8, pp. 1073-1077. DOI: 10.3103/S106287381108034X.
17. Anofriev V.A., Antonov A.S., Ivanov D.V. et al. Pattern formirovaniya fraktal'nogo rel'efa dlya nanorazmernykh plenok molibdena [Formation pattern of fractal relief for nanosized molybdenium fims], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostructur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and
nanomaterials], 2023, issue 15, pp. 17-31. DOI: 10.26456/pcascnn/2023.15.017 (in Russian).
18. Shishulin A.V., Fedoseev V.B., Shishulina A.V. Melting behavior of fractal-shaped nanoparticles (the example of Si-Ge system), Technical Physics, 2019, vol. 64, issue 9, pp. 1343-1349. DOI: 10.1134/S1063784219090172.
19. Shishulin A.V., Potapov A.A., Shishulina A.V. On the transition between ferromagnetic and paramagnetic states in mesoporous materials with fractal morphology, Eurasian Physical Technical Journal, 2021, vol. 18, issue2(36), pp. 6-11. DOI: 10.31489/2021NO2/6-11.
20. Shishulin A.V., Shishulina A.V. Ravnovensnyj fazovyj sostav i vzaimnaya rastvorimost’ komponentov v nanochastitsakh fraktal’noj formy tyazhelogo psevdosplava W-Cr [Equilibrium phase composition and mutual solubility in fractal nanoparticles of the W-Cr heavy pseudo-alloy], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostructur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 380-388. DOI: 10.26456/pcascnn/2019.11.380 (in Russian).
21. Shishulin A.V., Potapov A.A., Shishulina A.V. Fractal nanoparticles of phase-separating solid solutions: nanoscale effects on phase equilibria, thermal conductivity, thermoelectric performance, Springer Proceedings in Complexity, ed. by C.H. Skiadas, Y. Dimotikalis, Cham, Springer, 2022, pp. 421-432. DOI: 10.1007/978-3-030-96964-6_30.
22. Shishulin A.V., Shishulina A.V. K voprosu ob uprugikh kharakteristikakh mezoporistykh materialov [Several notes on the elastic properties of mesoporous materials], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostructur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 308-316. DOI: 10.26456/pcascnn/2023.15.308 (in Russian).
23. Qi W.H., Wang M.P. Size and shape dependent melting temperature of metallic nanoparticles, Materials Chemistry and Physics, 2004, vol. 88, issue 2-3, pp. 281-284. DOI: 10.1016/j.matchemphys.2004.04.026.
24. Qi W.H., Wang M.P., Zhou M. et al. Modeling cohesive energy and melting temperature of nanocrystals, Journal of Physics and Chemistry of Solids, 2006, vol. 67, issue 4, pp. 851-855. DOI: 10.1016/j.jpcs.2005.12.003.
25. Aqra F., Ayyad A. Surface free energy of alkali and transition metal nanoparticles, Applied Surface Science, 2014, vol. 324, pp. 308-313. DOI: 10.1016/j.apsusc.2014.07.004.
26. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver: Tver State Unibersity Publ., 2019, 168 p. (In Russian).
27. Attarian Shandiz M. Effective coordination number model for the size dependency of physical properties of nanocrystals, Journal of Physics: Condensed Matter, 2008, vol. 20, art. no. 325237, 9 p. DOI: 10.1088/0953-8984/20/32/325237.
28. Gaev D.S., Rekhviashvili S.S. Kinetics of crack formation in porous silicon, Semiconductors, 2012, vol. 46, issue 2, pp. 137-140. DOI: 10.1134/S1063782612020108.
29. Błaszczyński T., Ślosarczyk A., Morawski M. Synthesis of silica aerogel by supercritical drying method, Procedia Engineering, 2013, vol. 57, pp. 200-206. DOI: 10.1016/j.proeng.2013.04.028.
30. Chae H.K., Siberio-Pérez D.Y., Kim J. et al. A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 2004, vol. 427, pp. 523-527. DOI: 10.1038/nature02311.
31. Magomedov M.N. On the size dependences of the crystal-liquid phase transition parameters, Technical Physics, 2014, vol. 59, issue 5, pp. 675-681. DOI: 10.1134/S1063784214050211.
32. N’Diaye M., Degeratu C., Bouler J.-M., Chappard D. Biomaterials porosity determined by fractal dimensions, succolarity and lacunarity of microcomputed tomographic images, Materials Science and Engineering C, 2013, vol. 33, issue 4, pp. 2025-2030. DOI: 10.1016/j.msec.2013.01.020.
33. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Determination of the fractal size of titanium films at different scales, Journal of Physics: Conference Series, 2021, vol. 1758, art. no. 012013, 6 p. DOI: 10.1088/1742-6596/1758/1/012013.
34. Shishulin A.V., Potapov A.A., Shishulina A.V. Several notes on the lattice thermal conductivity of fractal-shaped nanoparticles, Eurasian Physical Technical Journal, 2022, vol. 19, issue3(41), pp. 10-17. DOI: 10.31489/2022No3/10-17.
35. Shishulin A.V., Potapov A.A., Shishulina A.V. Fractal nanoparticles of phase-separating solid solutions: morphology-dependent phase equilibria in tungsten heavy pseudo-alloys, Eurasian Physical Technical Journal,2023, vol. 20, issue4(46), pp. 125-132. DOI: 10.31489/2023no4/125-132.
36. Guisbiers G. Size-dependent material properties towards a universal equation, Nanoscale Research Letters, 2010, vol. 5, art. no. 1132, 5 p. DOI: 10.1007/s11671-010-9614-1.
37. Fedoseev V.B., Shishulin A.V. On the size distribution of dispersed fractal particles, Technical Physics, 2021, vol. 66, issue 1, pp. 34-40. DOI: 10.1134/S1063784221010072.