To the problem of tight binding potential parameters approbation: influence of the ratio between pair and many-body interaction on the process of the structure formation in binary Pd-Pt nanoparticles
N.Yu. Sdobnyakov, A.Yu. Kolosov, D.N. Sokolov, K.G. Savina, N.I. Nepsha, Ya.P. Savel’ev, G.D. Lomonosov
Tver State University
DOI: 10.26456/pcascnn/2024.16.399
Original article
Abstract: The reliability of the atomistic simulation is determined in terms of the correctness of the problem statement, including the choice of the interatomic interaction potential and its parameterization. In this paper, a detailed testing of the tight-binding potential parameters was carried out by means of studying the influence of the ratio between pair and many-body interactions on the process of the structure formation in binary Pd-Pt nanoparticles. Three parameterizations of the tight-binding potential for the cross parameters were selected: set (I) corresponded to the use of the Lorentz-Berthelot rule, sets (II) and (III) specified the scaling laws for the pair interaction parameters and the many-body interaction parameters, respectively. For sets (I) and (III), the surface segregation of palladium atoms was established, while the use of set (II) led to the formation of the Janus structure. In addition, differences in the formation of the local structure in binary Pd-Pt nanoparticles wereestablished. Set (III) predicts the dominance of the local bcc structure. Radial distributions of the local density of Pd and Pt atoms in the Pd-Pt nanoparticles at a final temperature of 300 K were also calculated.
Keywords: molecular dynamics method, tight-binding potential, pair interaction, many-body interaction, Pd-Pt nanoparticles, structure formation
- Nickolay Yu. Sdobnyakov – Dr. Sc., Docent, General Physics Department, Tver State University
- Andrei Yu. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
- Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University
- Kseniya G. Savina – 2nd year postgraduate student, General Physics Department, Tver State University
- Nikita I. Nepsha – 4th year postgraduate student, General Physics Department, Tver State University
- Yaroslav P. Savel’ev – 4th year student, General Physics Department, Tver State University
- Georgii D. Lomonosov – 4th year student, General Physics Department, Tver State University
Reference:
Sdobnyakov, N.Yu. To the problem of tight binding potential parameters approbation: influence of the ratio between pair and many-body interaction on the process of the structure formation in binary Pd-Pt nanoparticles / N.Yu. Sdobnyakov, A.Yu. Kolosov, D.N. Sokolov, K.G. Savina, N.I. Nepsha, Ya.P. Savel’ev, G.D. Lomonosov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 399-408. DOI: 10.26456/pcascnn/2024.16.399. (In Russian).
Full article (in Russian): download PDF file
References:
1. Sdobnyakov N.Yu., Kolosov A.Yu., Bogdanov S.S. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh: monografiya [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems: monograph]. Tver, Tver State University Publ., 2021, 168 p. DOI: 10.26456/skb.2021.168. (In Russian).
2. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
3. Rieth M. Nano-engineering in science and technology. An introduction to the world of nano-design, Series on the Foundations of Natural Science and Technology, vol. 6. 2003, Singapore, World Scientific Publishing Company, 164 p. DOI: 10.1142/5026.
4. Sdobnyakov N.Yu., Bazulev A.N., Samsonov V.M., Kul’pin D.A., Sokolov D.N. Study on the free surface energy per unit area of aluminum nanodroplets using the Schommers potential, Journal of Structural Chemistry, 2009, vol. 50, issue 6, pp. 1171-1176. DOI: 10.1007/s10947-009-0172-2.
5. Sdobnyakov N.Yu., Samsonov V.M. Issledovanie razmernoj zavisimosti poverkhnostnogo natyazheniya tverdykh nanochastits na osnove termodinamicheskoj teorii vozmushchenij [Study of the size dependence of surface tension of solid nanoparticles based on thermodynamic perturbation theory], Izvestiya vysshikh uchebnykh zavedenii, seriya Khimiya i khimicheskaya tekhnologiya [ChemChemTech], 2003, vol. 46, issue 5, pp. 90-94. (In Russian).
6. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
7. Daw M.S., Baskes M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B, 1984, vol. 29, issue 12, pp. 6443-6453. DOI: 10.1103/PhysRevB.29.6443.
8. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
9. Bogdanov S., Samsonov V., Sdobnyakov N. et al. Molecular dynamics simulation of the formation of bimetallic core-shell nanostructures with binary Ni–Al nanoparticle quenching, Journal of Materials Science, 2022, vol. 57, issue 28, pp. 13467-13480. DOI: 10.1007/s10853-022-07476-2.
10. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H., et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
11. Veresov S.A., Savina K.G., Veselov A.D. et al. K voprosu izucheniya protsessov strukturoobrazovaniya v chetyrekhkomponentnykh nanochastitsakh [To the problem of investigating the processes of structure formation in four-component nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 371-382. DOI: 10.26456/pcascnn/2022.14.371. (In Russian).
12. Sdobnyakov N.Yu., Kolosov A.Yu., Sokolov D.N. et al. Kompleksnyj podkhod k modelirovaniyu plavleniya i kristallizatsii v pyatikomponentnykh metallicheskikh nanochastitsakh: molekulyarnaya dinamika i metod Monte-Karlo [Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 589-601. DOI: 10.26456/pcascnn/2023.15.589. (In Russian).
13. Massen С., Mortimer-Jones T.V., Johnston R.L. Geometries and segregation properties of platinum–palladium nanoalloy clusters /, Journal of the Chemical Society, Dalton Transactions, 2002, issue 23, pp. 4375-4388. DOI: 10.1039/B207847C.
14. Kolosov A.Yu., Sokolov D.N., Savina K.G. et al. Vliyanie parnogo i mnogochastichnogo vzaimodejstviya na protsess strukturoobrazovaniya v binarnykh nanochastitsakh Pd-Pt [Influence of pair and many-body interactions on the process of structure formation in binary Pd-Pt nanoparticles], Proceedings of the XIII International Scientific Conference «Chemical Thermodynamics and Kinetics», May 15-19, 2023, Veliky Novgorod. Veliky Novgorod, Novgorod State University named after Yaroslav the Wise Publ., 2023, pp. 147-149. (In Russian).
15. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
16. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
17. Nguyen V.L., Michitaka O., Takashi M. et. al. New experimental evidences of Pt–Pd bimetallic nanoparticles with core–shell configuration and highly fine-ordered nanostructures by high-resolution electron transmission microscopy, The Journal of Physical Chemistry C, 2012, vol. 116, issue 22, pp. 12265-12274. DOI: 10.1021/jp303117y.
18. LAMMPS Molecular Dynamics Simulator. Available at: www.url: http://lammps.sandia.gov. (accessed 15.08.2024).
19. Samsonov V.M., Sdobnyakov N.Yu., Bazulev A.N. Size dependence of the surface tension and the problem of Gibbs thermodynamics extension to nanosystems, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, vol. 239. issue 1-3, pp. 113-117. DOI: 10.1016/j.colsurfa.2004.01.016.
20. Eom N., Messing M.E., Johnson J., Deppert K. General trends in core-shell preferences for bimetallic nanoparticles, ACS Nano, 2021, vol. 15, issue 5, pp. 8883-8855. DOI: 10.1021/acsnano.1c01500.
21. Samsonov V., Romanov A., Talyzin I. et al. Puzzles of surface segregation in binary Pt–Pd nanoparticles: molecular dynamics and thermodynamic simulations, Metals, 2023, vol. 13, issue 7, art. no. 1269, 20 p. DOI: 10.3390/met13071269.
22. Talyzin I.V., Samsonov V.M., Bogdanov S.S. et al. Identifikatsiya slozhnykh nanostruktur yadro-obolochka po radial'nym raspredeleniyam lokal'noj plotnosti komponentov [Identification of complex core-shell nanostructures from the radial distributions of the local density of components], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 307-320. DOI: 10.26456/pcascnn/2022.14.307. (In Russian).