Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Segregation of components as a necessary condition for the eutectic nature of an alloy and nanoalloy

V.M. Samsonov, I.V. Talyzin, D.V. Zhigunov

Tver State University

DOI: 10.26456/pcascnn/2024.16.387

Original article

Abstract: Employing results of our molecular dynamics experiments performed by using the LAMMPS program and embedded atom method, phase diagrams for binary Ag-Cu and Cu-Ni nanoalloys (binary nanoparticles containing 2000 and 5000 atoms) were constructed and analyzed. The concentration dependence of the melting temperature of nanoparticles was interpreted as the liquidus line. It was found that for the Ag-Cu nanoalloy, the phase diagram corresponds to the simple eutectic, and for the Cu-Ni nanoalloy, it corresponds to the phase diagram of an alloy with unlimited mutual solubility of components. The above results agree with the phase diagrams for the corresponding bulk alloys. It was found that the eutectic temperature decreases with decreasing nanoparticle size; and the value of the mole fraction corresponding to the eutectic point and equal to 0,4 coincides with the value corresponding to the bulk alloy. A hypothesis is put forward about the relationship between the surface segregation of one of the components of the binary alloy/nanoalloy and the eutectic type of the phase diagram. It is concluded that the surface segregation effect is a necessary condition for the eutectic behavior, but is not the sufficient condition.

Keywords: binary Ag-Cu and Cu-Ni nanoparticles, phase diagram, segregation ofcomponent, molecular dynamics

  • Vladimir M. Samsonov – Dr. Sc., Full Professor, General Physics Department, Tver State University
  • Igor V. Talyzin – Ph. D., Researcher, Management of Scientific Research, Tver State University
  • Dmitry V. Zhigunov – 4th year postgraduate student, General Physics Department, Tver State University

Reference:

Samsonov, V.M. Segregation of components as a necessary condition for the eutectic nature of an alloy and nanoalloy / V.M. Samsonov, I.V. Talyzin, D.V. Zhigunov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 387-398. DOI: 10.26456/pcascnn/2024.16.387. (In Russian).

Full article (in Russian): download PDF file

References:

1. Zhukhovitskiy A.A., Shvartsman L.A. Fizicheskaya khimiya [Physical Chemistry]. Moscow, Metallurgiya Publ., 1987, 688 p. (In Russian).
2. Barybin A.A. Elektronika i microelektronika [Electronics and microelectronics]. Мoscow, FIZMATLIT Publ., 2006, 424 p. (In Russian).
3. Kawecki A., Knych T., Sieja-Smaga E. et. al. Fabrication, properties and microstructures of high strength and high conductivity copper-silver wires, Archives of Metallurgy and Materials, 2012, vol. 57, issue 4, pp. 1261-1270. DOI: 10.2478/v10172-012-0141-1.
4. Qin Q.Y., Li J.F., Yang L. et. al. Solidification behavior and microstructure of Ag–Cu eutectic alloy at different sub-rapid cooling rates, Materials Chemistry and Physics, 2024, vol. 311, art. no. 128521, 8 p. DOI: 10.1016/j.matchemphys.2023.128521.
5. Taylor S.L. An investigation of the mechanical and physical properties of copper-silver alloys and the use of these alloys in pre-Columbian America, Dr. diss. Cambridge, Massachusetts Institute of Technology, 2013, 105 p.
6. Xu J., Gao J., Qin H. et. al. Cu nanowires and nanoporous Ag matrix fabricated through directional solidification and selective dissolution of Ag–Cu eutectic alloys, Materials, 2022, vol. 15, issue 22, art. no. 8189, 13 p. DOI: 10.3390/ma15228189.
7. Chowdhury S., Bhethanabotla V.R., Sen R. Silver-copper alloy nanoparticles for metal enhanced luminescence, Applied Physics Letters, 2009, vol. 95, issue 13, art. no. 131115, 3 p. DOI: 10.1063/1.3242007.
8. Bronner S.W., Wynblatt P. Surface segregation in a dilute copper-silver alloy, Journal of Materials Research, 1986, vol. 1, issue 5, pp. 646-651. DOI: 10.1557/JMR.1986.0646.
9. Langenohl L., Brink T., Richter G. et. al. Atomic-resolution observations of silver segregation in a [111] tilt grain boundary in copper, Physical Review B., 2023, vol. 107, issue 13, art. no. 134112, 14 p. DOI: 10.1103/PhysRevB.107.134112.
10. Bochicchio D., Ferrando R., Panizon E. et. al. Structures and segregation patterns of Ag–Cu and Ag–Ni nanoalloys adsorbed on MgO (001), Journal of Physics: Condensed Matter, 2016, vol. 28, issue 6, art. no. 064005, 13 p. DOI: 10.1088/0953-8984/28/6/064005.
11. van der Walt C., Terblans J.J., Swart H.C. A study of diffusion, atom migration and segregation in Cu and Ag alloy bulk-and
nanocrystals, AIP Advances, 2017, vol. 7, issue 5, art. no. 055102, 22 p. DOI: 10.1063/1.4983083.
12. Samsonov V.M., Talyzin I.V., Vasilyev S.A. et. al. On the problem of stability/instability of bimetallic core-shell nanostructures: Molecular dynamics and thermodynamic simulations, Computational Materials Science, 2021, vol. 199, art. no. 110710, 11 p. DOI: 10.1016/j.commatsci.2021.110710.
13. Beck L., Bosonnet S., Réveillon S. et. al. Silver surface enrichment of silver–copper alloys: a limitation for the analysis of ancient silver coins by surface techniques, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, vol. 226, issue. 1-2, pp. 153-162. DOI: 10.1016/j.nimb.2004.06.044.
14. Talyzin I.V., Kartoshkin A.Y., Vasilyev S.A. et. al. O fazovoy diagramme nanosplava Au-Si: molekulyarno-dinamicheskoe i termodinamicheskoe modelirovanie [On phase diagram of Au-Si nanoalloy: molecular dynamics and thermodynamic simulation], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 364-373. DOI: 10.26456/pcascnn/2019.11.364. (In Russian).
15. Samsonov V.M., Kartoshkin A.Y., Talyzin I.V. et al. On phase diagrams for Au-Si nanosystems: thermodynamic and atomistic simulations, Journal of Physics: Conference Series, 2020, vol. 1658, issue 1, art. no. 012047, 9 p. DOI: 10.1088/1742-6596/1658/1/012047.
16. Bogatyrenko S.I., Kryshtal A.P., Kruk A. Effect of size on the formation of solid solutions in Ag–Cu nanoparticles, The Journal of
Physical Chemistry C, 2023, vol. 127, issue 5, pp. 2569-2580. DOI: 10.1021/acs.jpcc.2c07132.
17. Zhdanov G.S. Kinetika plavleniya i kristallizatsii ostrovkovykh metallicheskikh plenok [Kinetics of melting and crystallization of metal film islands], Izvestiya AN SSSR. Seriya fizicheskaya [Proceedings of the USSR Academy of Sciences], 1977, vol. 41, issue 5, pp. 1004-1008. (In Russian).
18. Skripov V.P., Koverda V.P. Spontannaya kristallizatsiya pereochlazhdennykh zhidkostey [Spontaneous crystallization of periodic liquids]. Мoscow, Nauka Publ., 1984, 230 p. (In Russian).
19. Kofman R., Cheyssac P., Lereah Y. et. al. Melting of clusters approaching 0D, The European Physical Journal D: Atomic, molecular and optical physics, 1999, vol. 9, issue 1, pp. 441-444. DOI: 10.1007/978-3-642-88188-6_88.
20. Samsonov V.M., Kharechkin S.S., Gafner S.L., Redel’ L.V., Gafner Yu.Ya. Molecular dynamics study of the melting and crystallization of nanoparticles, Crystallography Reports, 2009, vol. 54, issue 3, pp. 526-531. DOI: 10.1134/S1063774509030250.
21. Samsonov V.M., Vasilyev S.A., Talyzin I.V. et. al. O prichinakh gisterezisa plavleniya i kristallizatsii nanochastits [On reasons for the hysteresis of melting and crystallization of nanoparticles], Pisma v zhurnal eksperimentalnoy i teoreticheskoy fiziki [Journal of Experimental and Theoretical Physics Letters], 2016, vol. 103, issue 2, pp. 100-105. DOI: 10.7868/S0370274X16020041. (In Russian).
22. Thompson A.P., Aktulga H.M., Berger R. et. al. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications, 2022, vol. 271, art. no. 108171, 34 p. DOI: 10.1016/j.cpc.2021.108171.
23. Verlet L. Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967, vol. 159, issue 1, pp. 98-103. DOI: 10.1103/PhysRev.159.98.
24. Nosé S.A. Molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, vol. 52, issue 2, pp. 255-268. DOI: 10.1080/00268978400101201.
25. Zhou X.W., Johnson R.A., Wadley H.N.G. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B., 2004, vol. 69, issue 14, art. no. 144113, 10 p. DOI: 10.1103/PhysRevB.69.144113.
26. Samsonov V., Romanov A., Talyzin I. et. al. Puzzles of surface segregation in binary Pt–Pd nanoparticles: molecular dynamics and thermodynamic simulations, Metals, 2023, vol. 13, issue 7, art. no. 1269, 20 p. DOI: 10.3390/met13071269.
27. Samsonov V.M., Romanov A.A., Talyzin I.V. et. al. Surface segregation in binary metallic nanoparticles: atomistic simulation and thermodynamic modeling, Bulletin of the Russian Academy of Sciences: Physics, 2024, vol. 88, issue 5, pp. 739-744. DOI: 10.1134/S1062873824706512.
28. Drits M.E., Bochvar N.R., Guzej L.S. et al. Dvoynye i mnogokomponentnye sistemy na osnove medi [Dual and multicomponent copper-based systems], ed. by N.Kh. Abrikosov. Moscow, Nauka Publ., 1979, 248 p. (In Russian).
29. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 2009, vol. 18, issue 1, art. no. 015012, 7 p. DOI: 10.1088/0965-0393/18/1/015012.
30. Romanovskii V.I., Kolosov A.Yu., Khort A.A. et al. Osobennosti sinteza nanochastits Cu-Ni: eksperiment i komp'yuternoe modelirovanie [Features of Cu – Ni nanoparticle synthesis: experiment and computer simulation], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 293-309. DOI: 10.26456/pcascnn/2020.12.293. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒