Calculation of state equation isobars of carbon dioxide and methane in pressure interval from 2 to 20 MPa
R.A. Magomedov, E.V. Akhmedov
Institute for Geothermal Researches and Renewable Energy, Institute for Geothermal Research and Renewable Energy of the Joint Institute for High Temperatures of the Russian Academy of Sciences
DOI: 10.26456/pcascnn/2024.16.373
Original article
Abstract: The paper presents the calculation results for the state equation isobars of carbon dioxide and methane in the pressure range from 2 to 20 MPa. The calculations have been performed by using the fractal equation of state and the Fract EOS software. It was previously shown that for carbon dioxide there is no temperature dependence of the fitting parameter α. For methane, it was found that the temperature dependence is not significant and weakens approaching to 1000 K. This allowed for considered substances to approximate the dependence of α on the density by a polynomial and use it in calculations at any temperature. Next, in order to apply the proposed model for calculating isobars, a set of isotherms with a small temperature step has been calculated. Then, a point with the required pressure was selected on each isotherm. The obtained results show a good agreement with experimental data. The proposed equation of state is suitable for studying industrially important substances such as carbon dioxide and methane.
Keywords: equation of state, integral-differentiation of fractional order, Maxwell relations, Helmholtz potential, partition function, carbon dioxide, methane, isobar, isotherm, thermophysical properties
- Ramazan A. Magomedov – Senior Researcher, Institute for Geothermal Researches and Renewable Energy, Institute for Geothermal Research and Renewable Energy of the Joint Institute for High Temperatures of the Russian Academy of Sciences
- Enver V. Akhmedov – Researcher, Institute for Geothermal Researches and Renewable Energy, Institute for Geothermal Research and Renewable Energy of the Joint Institute for High Temperatures of the Russian Academy of Sciences
Reference:
Magomedov, R.A. Calculation of state equation isobars of carbon dioxide and methane in pressure interval from 2 to 20 MPa / R.A. Magomedov, E.V. Akhmedov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 373-380. DOI: 10.26456/pcascnn/2024.16.373. (In Russian).
Full article (in Russian): download PDF file
References:
1. Kaplun A.B., Meshalkin A.B. Calculating the thermodynamic properties of carbon dioxide in the range of pressures up to 200 MPa, Russian Journal of Physical Chemistry A, 2019, vol. 93, no. 9, pp. 1641-1648. DOI:
10.1134/S0036024419090073.
2. Lees E.W., Mowbray B.A.W., Parlane F.G.L., Berlinguette C.P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers, Nature Reviews Materials, 2022, vol. 7, no. 1, pp. 55-64. DOI: 10.1038/s41578-021-00356-2.
3. Al Rowaihi I., Kick B., Grötzinger S.W. et al. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic, Bioresource Technology Reports, 2018, vol. 1, pp. 61-68. DOI: 10.1016/j.biteb.2018.02.007.
4. Bayanov I.M., Gimaltdinov I.K., Stolpovsky M.V. Simulation of the combustion process of methane hydrate taking into account incomplete evaporation of released water during its dissociation, High Temperature, 2023, vol. 61, issue 2, pp. 229-234. DOI: 10.1134/S0018151X23020013.
5. Yang H., Bu X., Song Y., Shen Y. Methane concentration measurement method in rain and fog coexisting weather based on TDLAS, Measurement, 2022, vol. 204, art. no. 112091. DOI: 10.1016/j.measurement.2022.112091.
6. Sussmann R., Forster F., Rettinger M., Jones N. Strategy for high-accuracy-and-precision retrieval of atmospheric methane from the mid-infrared FTIR network, Atmospheric Measurement Techniques, 2011, vol. 4, issue 9, pp. 1943-1964. DOI: 10.5194/amt-4-1943-2011.
7. Braginskiy O.B. Al'ternativnye motornye topliva. Mirovye tendentsii i vybor dlya Rossii [Alternative motor fuels. Global trends and choices for Russia], Rossiiskiy khimicheskiy zhurnal [Russian Chemical Journal], 2008, vol. LII, no. 6, pp. 137-146. (In Russian).
8. Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Fractional integrals and derivatives and some of their applications]. Minsk, Nauka i tekhnika Publ., 1987, 688 p. (In Russian).
9. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. North-Holland, Amsterdam, Elsevier, 2006, 540 р.
10. Landau L.D., Lifshitz E.M. Teoreticheskaya fizika. Tom 5, Chast’ 1: Statisticheskaya fizika [Theoretical physics. Vol. 5, Part 1: Statistical physics]. Moscow, Fizmatlit Publ., 2002, 616 p. (In Russian).
11. Sivukhin D.V. Obschiy kurs fiziki. Tom 2: Termodinamika i molekulyarnaya fizika [General course of physics. Vol. 2: Thermodynamics and molecular physics]. Moscow, Fizmatlit Publ., 2005, 544 p. (In Russian).
12. Meilanov R.P., Magomedov R.A. Thermodynamics in fractional calculus, Journal of Engineering Physics and Thermophysics, 2014, vol. 87, issue 6, pp. 1521-1531. DOI: 10.1007/s10891-014-1158-2.
13. Jahnke E., Edme F., Lösch F. Tafeln, höherer funktionen seschste auflage neubearbeitet. Stuttgart, Verlagsgesellschaft, 1960, XII+318 s.
14. Magomedov R.A., Meilanov R.R., Meilanov R.P. et al. Generalization of thermodynamics in of fractional-order derivatives and calculation of heat-transfer properties of noble gases, Journal of Thermal Analysis and Calorimetry, 2018, vol. 133, issue 2, pp. 1189-1194. DOI: 10.1007/s10973-018-7024-2.
15. Magomedov R.A., Akhmedov E.N. Water vapor isotherm as a function of the accuracy of determination of an adjustable parameter, Journal of Engineering Physics and Thermophysics, 2023, vol. 96, issue 4, pp. 1060-1065. DOI: 10.1007/s10891-023-02770-5.
16. Magomedov R.A., Akhmedov E.N. Raschet P-ρ-T svoistv vodyanogo para v diapazone temperature ot 773 K do 1673 K [Water vapor P-ρ-T properties calculation in the temperature range from 773 K to 1673 K], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 446-452. DOI: 10.26456/pcascnn/2022.14.298. (In Russian).
17. Magomedov R.A., Akhmedov E.N. Raschet P-ρ-T svoistv CO2 v diapazone temperature ot T = 400 K do T = 1700 K [Calculation of CO2 P-ρ-T properties in the temperature range from T = 400 K to T = 1700 K], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 274-281. DOI: 10.26456/pcascnn/2023.15.274. (In Russian).
18. Altunin V.V. GSSSD 96-86. Tablitsy standartnykh spravochnykh dannykh. Dioksid ugleroda zhidkij i gazoobraznyj [Tables of standard reference data. Carbon dioxide liquid and gaseous]. Moscow, IPK Standartov Publ., 1986, 25 p. (In Russian).
19. Sychev V.V., Vasserman A.A., Zagoruchenko V.A. et al. Termodinamicheskie svoistva metana: GSSSD. Seriya monografii [Thermodynamic properties of methane: GSSSD. Monograph series]. Moscow, IPK Standartov Publ., 1979, 348 p. (In Russian).
20. Frolov S.M., Kuznetsov N.M., Krueger C. Real-gas properties of n-alkanes, O2, N2, H2O, CO, CO2, and H2 for diesel engine operation conditions, Russian Journal of Physical Chemistry B, 2009, vol. 3, issue 8, pp. 1191-1252. DOI: 10.1134/S1990793109080090.
21. Fizicheskie velichiny. Spravochnik [Physical quantities. Handbook], ed. by I.S. Grigor'eva, E.Z. Mejlikhova, Moscow, Energiya Publ., 1991, 1232 p. (In Russian).
22. Akhmedov E.N., Magomedov R.A., Aliverdiev A.A. Fract EOS. Certificate RF, no 2021661219, 2021. (In Russian).