Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Size effect in four-component Au-Cu-Pd-Pt nanoparticles and their stability

A.Yu. Kolosov, S.A. Veresov, S.V. Serov, D.N. Sokolov, K.G. Savina, R.E. Grigoryev, N.Yu. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2024.16.361

Original article

Abstract: The four-component Au-Cu-Pd-Pt nanosystems of different sizes with the stoichiometric composition Au3CuPd12Pt4 were studied. The molecular dynamics method was used as a simulation method, the interatomic interaction was described by the tight-binding potential. Based on the results of a series of computer experiments, it was found that the four-component Au-Cu-Pd-Pt nanoparticles do not have a tendency to form a core-shell structure, even though gold atoms demonstrate an increased segregation to the surface. Melting and crystallization temperatures were determined for the studied Au-Cu-Pd-Pt nanoparticles. The dependence of the crystallization temperature on the cooling rate was also established. With an increase in the cooling rate, the crystallization temperature decreases, and the temperature range in which crystallization occurs increases, while the heating rate does not significantly affect the melting temperature. It is shown that the size effect and the effect of the temperature-changing rate make it possible to control the dominant presence of the fcc or hcp local structure, and also affect the temperature stability of the resulting crystalline phases.

Keywords: molecular dynamics method, tight-binding potential, four-component nanoparticles, structure formation, melting temperature, thermal stability

  • Andrei Yu. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Sergey A. Veresov – 3rd year postgraduate student, General Physics Department, Tver State University
  • Sergei V. Serov – 2nd year graduate student, General Physics Department, Tver State University
  • Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University
  • Kseniya G. Savina – 2nd year postgraduate student, General Physics Department, Tver State University
  • Roman E. Grigoryev – 3rd year postgraduate student, General Physics Department, Tver State University
  • Nickolay Yu. Sdobnyakov – Dr. Sc., Docent, General Physics Department, Tver State University

Reference:

Kolosov, A.Yu. Size effect in four-component Au-Cu-Pd-Pt nanoparticles and their stability / A.Yu. Kolosov, S.A. Veresov, S.V. Serov, D.N. Sokolov, K.G. Savina, R.E. Grigoryev, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 361-372. DOI: 10.26456/pcascnn/2024.16.361. (In Russian).

Full article (in Russian): download PDF file

References:

1. Yin H.-J., Zhou J.-H., Zhang Y.-W. Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives, Inorganic Chemistry Frontiers, 2019, vol. 6, issue 10, pp.2582-2618. DOI: 10.1039/C9QI00689C.
2. Liao T.-W., Yadav A., Ferrari P. Composition-tuned Pt-skinned PtNi bimetallic clusters as highly efficient methanol dehydrogenation catalysts, Chemistry Material, 2019, vol. 31, issue 24, pp. 10040-10048. DOI: 10.1021/acs.chemmater.9b02824.
3. Samsonov V.M., Romanov A.A., Kartoshkin A.Yu. et al. Embedding functions for Pt and Pd: recalculation and verification on properties of bulk phases, Pt, Pd, and Pt–Pd, Applied Physics A, 2022, vol. 128, issue 9, art. no. 826, 14 p. DOI: 10.1007/s00339-022-05922-1.
4. Alexeev O.S., Gates B.C. Supported bimetallic cluster catalysts, Industrial & Engineering Chemistry Research, 2003, vol. 42, issue 8, pp. 1571-1587. DOI: 10.1021/ie020351h.
5. Guisbiers G., Abudukelimu G., Hourlier D. Size-dependent catalytic and melting properties of platinum- palladium nanoparticles, Nanoscale Research Letters, 2011, vol. 6, art. no. 396, 5 p. DOI: 10.1186/1556-276X-6-396.
6. Ferrando R., Jellinek J., Johnston R.L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chemical Reviews, 2008, vol. 108, issue 3, pp. 845-910. DOI: 10.1021/cr040090g.
7. Mazumder V., Chi M., More K.L., Sun S. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles, Angewandte Chemie - International Edition, 2010, vol. 49, issue 49, pp. 9368-9372. DOI: 10.1002/anie.201003903.
8. Jeon M.K., Lee K.R., Jeon H.J. et al. Quaternary Pt2Ru1Fe1M1/C (M=Ni, Mo, or W) catalysts for methanol electro-oxidation reaction, Korean Journal of Chemical Engineering, 2015, vol. 32, issue 2, pp. 206-215. DOI: 10.1007/s11814-014-0186-0.
9. Soltani N., Rahman J.U., Carvalho P.A., et al. From quaternary to senary high entropy antimonide nanoparticles by a facile and scalable thermal treatment method, Materials Research Bulletin, 2022, vol. 153, art. no. 111873, 11 p. DOI: 10.1016/j.materresbull.2022.111873.
10. Ryltsev R.E., Chtchelkatchev N.M. Deep machine learning potentials for multicomponent metallic melts: Development, predictability and compositional transferability, Journal of Molecular Liquids, 2022, vol. 349, art. no. 118181, 10 p. DOI: 10.1016/j.molliq.2021.118181.
11. Balyakin I.A., Yuryev A.A., Gelchinski B.R., Rempel A.A. Ab initio molecular dynamics and high-dimensional neural network potential study of VZrNbHfTa melt, Journal of Physics: Condensed Matter, 2020, vol. 32, no. 21, art. no. 214006, 15 p. DOI: 10.1088/1361-648X/ab6f87.
12. Balyakin I.A., Rempel A.A. Atomistic calculation of the melting point of the high-entropy cantor alloy CoCrFeMnNi, Doklady Physical Chemistry, 2022. vol. 502, issue 1, pp. 11-17. DOI: 10.1134/S0012501622010018.
13. Gupta R.P. Lattice relaxation at a metal surface, Physical Review B, 1981, vol. 23, issue 12, pp. 6265-6270. DOI: 10.1103/PhysRevB.23.6265.
14. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
15. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
16. Bogdanov S., Samsonov V., Sdobnyakov N. et al. Molecular dynamics simulation of the formation of bimetallic core-shell nanostructures with binary Ni–Al nanoparticle quenching, Journal of Materials Science, 2022, vol. 57, issue 28, pp. 13467-13480. DOI: 10.1007/s10853-022-07476-2.
17. Myasnichenko V.S., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Modelirovanie protsessov strukturoobrazovaniya v bimetallicheskikh nanosplavakh razlichnogo sostava [Modeling of processes of structure formation in bimetallic nanoalloys of different composition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 323-329. DOI: 10.26456/pcascnn/2017.9.323. (In Russian).
18. Leimkuhler B., Noorizadeh E., Theil F. A Gentle Stochastic Thermostat for Molecular Dynamics, Journal of Statistical Physics, 2009, vol. 135, issue 2, pp. 261-277. DOI: 10.1007/s10955-009-9734-0.
19. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
20. Veresov S.A., Savina K.G., Veselov A.D. et al. K voprosu izucheniya processov strukturoobrazovaniya v chetyrekhkomponentnyh nanochasticah [To the problem of investigating the processes of structure formation in four-component nanoparticles] Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 371-382. DOI: 10.26456/pcascnn/2022.14.371. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒