Interphace energy of aluminum crystals at the boundary with nonpolar organic liquids
A.M. Apekov1, I.G. Shebzukhova2, L.A. Khamukova1
1 North-Caucasus Center for Mathematical Research, North-Caucasus Federal University
2 Kabardino-Balkarian State University named after H.M. Berbekov
DOI: 10.26456/pcascnn/2024.16.318
Original article
Abstract: Understanding the energy characteristics at the metal-organic interface is of great importance for the development of equipment and technologies in various industries. In this regard, there is a great interest in studying the processes occurring at this interface. Particularly noteworthy is the rapid growth of studies on the properties of metal-organic framework structures, which is associated with the possibility of synthesizing these structures with the desired properties by varying the lengths of the organic molecules connecting the atoms of metals or their oxides, as well as by selecting the chemical composition. In this paper, the values of the interfacial energy at the boundaries of the faces of an aluminum crystal with organic liquids are obtained within the framework of the electron-statistical method, taking into account the polarization of metal ions and molecules of the organic liquid, as well as the dispersion interaction of Wigner-Seitz cells on the interface. The dependence of the interfacial energy and corrections to the interfacial energy on the permittivity of the liquid and the orientation of the metal crystal is obtained. It is found that the dispersion correction makes a positive contribution while the polarization correction reduces the interfacial energy.
Keywords: interphase energy, polarization correction, dispersion correction, electronic statistical method, nonpolar organic liquid, aluminum
- Aslan M. Apekov – Ph. D., Deputy Director, North-Caucasus Center for Mathematical Research, North-Caucasus Federal University
- Irina G. Shebzukhova – Dr. Sc., Professor, Professor of the Department of Theoretical and Experimental Physics, Institute of Physics and Mathematics, Kabardino-Balkarian State University named after H.M. Berbekov
- Liana A. Khamukova – Ph. D., Senior Researcher, Department of Mathematical Physics, North-Caucasus Center for Mathematical Research, North-Caucasus Federal University
Reference:
Apekov, A.M. Interphace energy of aluminum crystals at the boundary with nonpolar organic liquids / A.M. Apekov, I.G. Shebzukhova, L.A. Khamukova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 318-326. DOI: 10.26456/pcascnn/2024.16.318. (In Russian).
Full article (in Russian): download PDF file
References:
1. Ryder M. R., Tan J.-C. Nanoporous metal organic framework materials for smart applications, Materials Science and Technology, 2014, vol. 30, issue 13, pp. 1598-1612. DOI: 10.1179/1743284714y.0000000550.
2. Butova V.V., Soldatov M.A., Guda A.A. et al. Metal-organic frameworks: structure, properties, methods of synthesis and characterization, Russian Chemical Reviews, 2014, vol. 85, no. 3, pp. 280-307. DOI: 10.1070/RCR4554.
3. Prabhakaran P.K., Catoire L., Deschamps J. Aluminium doping composite metal-organic framework by alane nanoconfinement: Impact on the room temperature hydrogen uptake, Microporous and Mesoporous Materials, 2017, vol. 243, pp. 214-220. DOI: 10.1016/j.micromeso.2017.02.032.
4. Zeraati M., Rahdar A., Medina D.I., Sargazi G. Synthesis of Al-based metal-organic framework in water with caffeic acid ligand and NaOH as linker sources with highly efficient anticancer treatment, Frontiers in Chemistry, 2021, vol. 9, art. no. 784461, 9 p. DOI: 10.3389/fchem.2021.784461.
5. Hu Z., Deibert B.J., Li J. Luminescent metal–organic frameworks for chemical sensing and explosive detection, Chemical Society Reviews, 2014, vol. 43, issue 16, pp. 5815-5840. DOI: 10.1039/c4cs00010b.
6. Sato H., Matsuda R., Sugimoto K., Takata M., Kitagawa S. Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion, Nature Materials, 2010, vol. 9, pp. 661-666. DOI: 10.1038/nmat2808.
7. Zhang W., Xiong R.-G. Ferroelectric metal–organic frameworks, Chemical Reviews, 2012, vol. 112, issue 2, pp. 1163-1195. DOI: 10.1021/cr200174w.
8. Tu J., Song W.-L., Lei H. et al. Nonaqueous rechargeable aluminum batteries: progresses, challenges, and perspectives, Chemical Reviews, 2021, vol. 121, issue 8, pp. 4903-4961. DOI: 10.1021/acs.chemrev.0c01257.
9. Elia G.A., Kravchyk K.V., Kovalenko M.V. et al. An overview and prospective on Al and Al-ion battery technologies, Journal of Power Sources, 2021, vol. 481, art. no. 228870, 22 p. DOI: 10.1016/j.jpowsour.2020.228870.
10. Barea E., Montoro C., Navarro J. Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours, Chemical Society Reviews, 2014, vol. 43, issue 16, pp. 5419-5430. DOI: 10.1039/c3cs60475f.
11. Xiao B., Wheatley P.S., Zhao X. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework, Journal of the American Chemical Society, 2007, vol. 129, issue 5, pp. 1203-1209. DOI: 10.1021/ja066098k.
12. Horcajada P., Chalati T., Serre C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nature Materials, 2010, vol. 9, pp. 172-178. DOI: 10.1038/nmat2608.
13. Horcajada P., Gref R., Baati T. et al. Metal–organic frameworks in biomedicine, Chemical Reviews, 2012, vol. 112, issue 2, pp. 1232-1268. DOI: 10.1021/cr200256v.
14. Bloch E.D., Queen W.L., Chavan S. et al. Gradual release of strongly bound nitric oxide from Fe2(NO)2, Journal of the American Chemical Society, 2015, vol. 137, issue 10, pp. 3466-3469. DOI: 10.1021/ja5132243.
15. Qiu S., Xue M., Zhu G. Metal–organic framework membranes: from synthesis to separation application, Chemical Society Reviews, 2014, vol. 43, issue 16, pp. 6116-6140. DOI: 10.1039/C4CS00159A.
16. Rodenas T., Luz I., Prieto G. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation, Nature Materials, 2015, vol. 14, pp. 48-55. DOI: 10.1038/nmat4113.
17. Gabuda S.P., Kozlova S.G., Dybtsev D.N., Fedin V.P. Supramolecular interactions and structural transformations in the metal-organic sorbent-acetone nanoreactor system, Journal of Structural Chemistry, 2009, vol. 50, issue 5, pp. 887-894. DOI: 10.1007/s10947-009-0132-x.
18. Gabuda S.P., Kozlova S.G., Samsonenko D.G., Dybtsev D.N., Fedin V.P. Quantum rotations and chiral polarization of qubit prototype molecules in a highly porous metal–organic framework: 1H NMR T1 study, Journal of Physical Chemistry C, 2011, vol. 115, issue 42, pp. 20460-20465. DOI: 10.1021/jp206725k.
19. Xu X., Cao R., Jeong S., Cho J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries, Nano Letters, 2012, vol. 12, issue 9, pp. 4988-4991. DOI: 10.1021/nl302618s.
20. Yang S.J., Nam S., Kim T. et al. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework, Journal of the American Chemical Society, 2013, vol. 135, issue 20, pp. 7394-7397. DOI: 10.1021/ja311550t.
21. Langseth E., Swang O., Arstad B. et al. Synthesis and characterization of Al@MOF materials, Materials Chemistry and Physics, 2019, vol. 226, pp. 220-225. DOI: 10.1016/j.matchemphys.2019.01.009.
22. Manikkoth M., Kannan S.K., Gladis J.M., Rajan T.P.D. Aluminium alloys and composites for electrochemical energy systems, Progress in Materials Science, 2024, vol. 146, art. no. 101322, 89 p. DOI: 10.1016/j.pmatsci.2024.101322.
23. Lin M.-C., Gong M., Lu B. et al. An ultrafast rechargeable aluminium-ion battery, Nature, 2015, vol. 520, pp. 325-328. DOI: 10.1038/nature14340.
24. Miller W.S., Zhuang L., Bottema J. et al. Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering: A, 2000, vol. 280, issue 1, pp. 37-49. DOI: 10.1016/S0921-5093(99)00653-X.
25. Apekov А.М., Shebzukhova I.G. Orientatsionnaya zavisimost' mezhfaznoj energii nizkotemperaturnoj modifikatsii titana na granitse s organicheskoj zhidkost' [Orientational dependence of the interphase energy of low-temperature modification of titanium at the boundary with an organic liquid], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 17-23. DOI: 10.26456/pcascnn/2022.14.017.
26. Apekov A.M., Shebzukhova I.G. Interface energy of crystal faces of IIА-type metals at boundaries with nonpolar organic liquids, allowing for dispersion and polarization corrections, Bulletin of Russian Academy of Science. Physics, 2019, vol. 83, issue 6, pp. 760-763. DOI: 10.3103/S1062873819060078.
27. Apekov A.M., Shebzukhova I.G. Polarization correction to the interfacial energy of faces of alkali metal crystals at the borders with a nonpolar organic liquid, Bulletin of Russian Academy of Science. Physics, 2018, vol. 82, issue 7, pp. 789-792. DOI: 10.3103/S1062873818070067.
28. Apekov A.M., Shebzukhova I.G. Polyarizatsionnaya i dispersionnaya popravki k mezhfaznoj energii granej kristallov nizkotemperaturnykh modifikatsij kal'tsiya i bariya na granitse s nepolyarnymi organicheskimi zhidkostyami [Polarization and dispersion corrections to the interfacial energy of the facets at the boundary between calcium/barium crystals and nonpolar organic liquids], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 20-26. DOI: 10.26456/pcascnn/2018.10.020.
29. Shebzukhova I.G., Apekov A.M., Khokonov Kh.B. Orientation dependence of the interfacial energies of chromium and α-iron crystals at boundaries with nonpolar organic liquids, Bulletin of Russian Academy of Science. Physics, 2017, vol. 81, issue 5, pp. 605-607. DOI: 10.3103/S1062873817050173.
30. Shebzukhova I.G., Apekov A.M., Khokonov Kh.B. Anisotropy of the interface energy of IA and IB metals at a boundary with organic liquids, Bulletin of Russian Academy of Science. Physics, 2016, vol. 80, issue 6, pp. 657-659. DOI: 10.3103/S1062873816060307.
31. Apekov A.M., Shebzukhova I.G. Vklad dispersionnogo vzaimodejstviya v mezhfaznuyu energiyu kristallov kobal'ta na granitse s nepolyarnymi organicheskimi zhidkostyami [Contribution of the dispersion interaction to the interface energy of cobalt crystals at the boundary with nonpolar organic liquids], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 231-238. DOI: 10.26456/pcascnn/2023.15.231.