Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Magnetoresistance of LSMO/(Cu2O, Ag) composites

A.A. Utoplov1, N.V. Prutsakova2, A.G. Rudskaya1, A.V. Nazarenko3, M.V. Belokobylsky1, Yu.V. Kabirov1

1 Southern Federal University
2 Don State Technical University
3 Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences

DOI: 10.26456/pcascnn/2024.16.307

Original article

Abstract: Electrical, structural and magnetoresistive properties of ceramic composites with different mass ratios of components were synthesized and studied: (Cu2O+CuO)x/(La0,7Sr0,3MnO3)1-x (x = 0,17; 0,22; 0,33; 0,43; 0,48; 0,53; 0,58; 0,63; 0,68; 0,72; 0,77; 0,82; 0,86; 0,91; 0,99), and Agy/(La0,7Sr0,3MnO3)1-y (y = 0; 0,02; 0,06; 0,08; 0,10; 0,12; 0,25; 0,50). The composites with copper oxides were synthesized using an original technology for sample preparation using dispersed copper and a pre-prepared ferromagnetic oxide with the perovskite structure La0,7Sr0,3MnO3. Pressed mixtures with a copper content of less than 45% by weight were annealed at a temperature of 1050°C. At higher copper contents, annealing was performed at 1000°C. The compositions with silver nanoparticles were prepared by reduction from silver nitrate. The composites were synthesized using an original technology for sample preparation using dispersed copper and La0,7Sr0,3MnO3 manganite with annealing at 1000-1050°C. It was shown that the synthesized composites with a mass ratio of components (Cu2O+CuO)0,43/(La0,7Sr0,3MnO3)0,57 exhibit the highest magnetoresistance values of about 7% in a constant magnetic field of 14 kOe at room temperature. The maximum magnetoresistance correlates with a special region of change in the dependence of electrical resistance on the component ratio in these compositions. In the Ag0,08/(LSMO)0,92 composition, the magnetoresistance values reach 5,5%.

Keywords: ceramic composites, magnetoresistance, lanthanum-strontium manganite, copper oxides, silver nanoparticles, percolation

  • Andrey A. Utoplov – 1st year master's student, Department of Physics, Southern Federal University
  • Natalia V. Prutsakova – Ph. D., Docent, Physics Department, Don State Technical University
  • Angela G. Rudskaya – Ph. D., Professor, Nanotechnology Department, Southern Federal University
  • Alexander V. Nazarenko – Ph. D., Senior Researcher, Federal Research Centre Southern Scientific Centre of the Russian Academy of Sciences
  • Mark V. Belokobylsky – Laboratory Assistant, Department of General Physics, Southern Federal University
  • Yuri V. Kabirov – Dr. Sc., Professor, Department of General Physics, Southern Federal University

Reference:

Utoplov, A.A. Magnetoresistance of LSMO/(Cu2O, Ag) composites / A.A. Utoplov, N.V. Prutsakova, A.G. Rudskaya, A.V. Nazarenko, M.V. Belokobylsky, Yu.V. Kabirov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 307-317. DOI: 10.26456/pcascnn/2024.16.307. (In Russian).

Full article (in Russian): download PDF file

References:

1. Baibich M.N., Broto J.M., Fert A. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattice. Physical Review Letters, 1988, vol. 61, issue 21, pp. 2472-2475. DOI: 10.1103/PhysRevLett.61.2472.
2. Binasch G., Grünberg P., Saurenbach F. et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Physical Review B, 1989, vol. 39, issue 7, pp. 4828-4830. DOI: 10.1103/PhysRevB.39.4828.
3. Gridnev S.A., Kalinin Yu.E., Sitnikov A.V., Stogney O.V. Nelineinye yavleniya v nano- i mikrogeterogennykh sistemakh [Nonlinear phenomena in nano- and microheterogeneous systems]. Moscow, Binom Publ., 2012, 352 p. (In Russian).
4. Slonczewski J.C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier, Physical Review B, 1989, vol. 39, issue 10, pp. 6995-7002. DOI: 10.1103/PhysRevB.39.6995.
5. Volkov N V Spintronics: manganite-based magnetic tunnel structures, Physics-Uspekhi, 2012, vol. 55, issue 3, pp. 250-269 (2012). DOI: 10.3367/UFNe.0182.201203b.0263.
6. Gupta S., Ranjit R., Mitra C. et al. Enhanced room-temperature magnetoresistance in La0.7Sr0.3MnO3-glass composites, Applied Physics Letters, 2001, vol. 78, issue 3, pp. 362-364. DOI: 10.1063/1.1342044.
7. Artale C., Fermepin S., Forti M. et al. Electric and magnetic properties of PMMA/manganite composites, Physica B: Condensed Matter, 2009, vol. 404, issue 18, pp. 2760-2762. DOI: 10.1016/j.physb.2009.06.081.
8. Bowen M., Bibes M., Barthelemy A. et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments, Applied Physics Letters, 2003, vol. 82, issue 2, pp. 233-235. DOI: 10.1063/1.1534619.
9. Urushibara A., Moritomo Y., Arima T. et al. Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3, Physical Review B, 1995, vol. 51, issue 20, pp. 14103-14109. DOI: 10.1103/PhysRevB.51.14103.
10. Zulkarnain Z., Imaduddin A., Munazat D.R. et al. Regulating the electron transport mechanism and increasing magnetoresistance: the role of CuO filler in La0.7Sr0.2Ca0.1MnO3 grain boundary, Research Square, 2023, 22 p. DOI: 10.21203/rs.3.rs-2745660/v1.
11. Zhou Y., Zhu X., Li S. Effects of copper doping on the structure, electrical and low-field magnetoresistance properties of (1–x)La0.67Sr0.33MnO3/xCu (x=0-0.15) composite coatings, Ceramics International, 2017, vol. 43, issue 13, pp. 10026-10031. DOI: 10.1016/j.ceramint.2017.05.017.
12. Sidorov A.I., Bezrukov P.A., Nashchekin A.V., Nikanorov N.V. Formation of nano- and microstructured layers of silver during thermal destruction of polyvinyl alcohol with silver nitrate, Technical Physics, 2022, vol. 67, no. 9, pp. 1186-1190. DOI: 10.21883/TP.2022.09.54682.91-22.
13. Kabirov Yu.V., Gavrilyachenko V.G., Bogatin A.S. et al. Ehlektricheskie svoistva magnitorezistivnykh kompozitov na osnove manganitov [Electrical properties of magnetoresistive composites based on manganites], Inzhenernyi vestnik Dona [Engineering Journal of Don], 2018, no. 4 (51), 9 p. (In Russian).
14. Guinier A. Théorie et technique de la radiocristallographie [Theory and technique of radiocrystallography]. Paris, Dunod, 1956, 736 p. (In French).
15. Cantoni M., Petti D., Bertacco R. et al. Band alignment at interface: A combined experimental-theoretical determination, Applied Physics Letters, 2010, vol. 97, issue 3, pp. 032115-1-032115-3. DOI: 10.1063/1.3467206.
16. Pallecchi I., Pellegrino L., Banerjee N. et al. Cu2O as a nonmagnetic semiconductor for spin transport in crystalline oxide electronics, Physical Review B, 2010, vol. 81, issue 16, pp. 165311-1-165311-10. DOI: 10.1103/PhysRevB.81.165311.
17. Chen Ch., He L., Lai L. et al. Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies, Journal of Physics: Condensed Matter, 2009, vol. 21, no. 14, art. № 145601, 8 p. DOI: 10.1088/0953-8984/21/14/145601.

⇐ Prevoius journal article | Content | Next journal article ⇒