Clusters in the structure of non-stochiometric lithium niobate crystals
N.A. Teplyakova, N.V. Sidorov, M.N. Palatnikov
Tananaev Institute of Chemistry Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
DOI: 10.26456/pcascnn/2024.16.300
Short communication
Abstract: This work examines the main reasons for the appearance of an «extra» band with a frequency of ~737 cm-1 in the Raman spectra of lithium niobate crystals. The following stand out among the reasons: the presence of clusters (microstructures); the presence of microinclusions of impurity phases of other lithium niobates (LiNb3O8 and Li3NbO4); strong anharmonicity of some fundamental vibrations of the Raman spectrum. The structure of clusters differs from the structure of the crystalline matrix. It has been shown that the appearance of a line with a frequency of ~737 cm-1 in the Raman spectrum cannot be unambiguously associated with the existence of regions with reduced symmetry in the structure of doped crystals. These regions are the result of uneven incorporation of dopants into the crystal. The existence of these areas is also not explained in terms of the photorefractive effect. The results of studying the features of the defect structure, stoichiometry, optical uniformity and photorefractive effect confirm a correlation between the band with a frequency of ~737 cm-1 and NbLi defects in the structure of the lithium niobate crystal.
Keywords: lithium niobate, crystal, defects, clusters, Raman spectroscopy, anharmonicity of fundamental vibrations, «extra» lines
- Natalya A. Teplyakova – Ph. D., Senior Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
- Nikolay V. Sidorov – Dr. Sc., Professor, Chief Researcher and as Head of the Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
- Mikhail N. Palatnikov – Dr. Sc., Chief Researcher and as Head of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
Reference:
Teplyakova, N.A. Clusters in the structure of non-stochiometric lithium niobate crystals / N.A. Teplyakova, N.V. Sidorov, M.N. Palatnikov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 300-306. DOI: 10.26456/pcascnn/2024.16.300. (In Russian).
Full article (in Russian): download PDF file
References:
1. Sidorov N.V., Pikoul O.Y., Teplyakova N.A., Palatnikov M.N. Lazernaya konoskopiya i fotoindutsirovannoe rasseyanie sveta v issledovaniyakh svojstv nelinejno-opticheskogo kristalla niobata litiya [Laser conoscopy and photoinduced light scattering in studies of the properties of a nonlinear optical single crystal of lithium niobate]. Moscow, RAS Publ., 2019, 350 p. (In Russian).
2. Efremov I.N., Masloboeva S.M., Biryukova I.V. et al. Issledovanie akusticheskikh, opticheskikh i fotorefraktivnykh svojstv monokristallov niobata litiya, legirovannykh tsinkom v oblasti kontsentratsij 5,38-9,0 mol.% Zn [Investigation of acoustic, optical and photorefractive properties of multicrystals of lithium niobate doped with zinc in the area of concentrations of 5,38-9,0 mol.% Zn], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 85-97. (In Russian). DOI: 10.26456/pcascnn/2023.15.085.
3. Volk T., Wohlecke M. Lithium niobate. Defects, photorefraction and ferroelectric switching. Berlin, Springer, 2008, 250 p. DOI: 10.1007/978-3-540-70766-0.
4. Bouhari E., Mohamadou B., Bourson P. Semi-experimental determination of the linear clamped electro-optical coefficients of polar crystals from vibrational spectroscopic data, Crystals, 2022, vol. 12, issue 1, art. no. 52, 13 p. DOI: 10.3390/cryst12010052.
5. Gorelik V.S., Sverbil’ P.P. Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals], Inorganic Materials, 2015, vol. 51, issue 11, pp. 1104-1110, DOI: 10.1134/S0020168515100076.
6. Sanna S., Neufeld S., Rüsing M. et al. Raman scattering efficiency in LiTaO3 and LiNbO3 crystals, Physical Review B, 2015, vol. 91, issue 22, pp. 224302-1-224302-9. DOI: 10.1103/PhysRevB.91.224302.
7. Fontana M.D., Bourson P. Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices, Applied Physics Reviews, 2015, vol. 2, issue 4, pp. 040602-1-04062-14. DOI: 10.1063/1.4934203.
8. Lеngyel K., Péter Á., Kovács L. et al. Growth, defect structure, and THz application of stoichiometric lithium niobate, Applied Physics Reviews, 2015, vol. 2, issue 4, pp. 040601-1-040601-28. DOI: 10.1063/1.4929917.
9. Sidorov N.V., Mavrin B.N., Chufyrev P.G., Palatnikov M. N. Fononnye spektry monokristallov niobata litiya [Phonon spectra of lithium niobate single crystals], ed. V.T. Kalinnikov. Apatity, KSC RAS Publ., 2012, 215 p. (In Russian).
10. Kong Y., Xu J., Chen X. et al. Ilmenite-like stacking defect in nonstoichiometric lithium niobate crystals investigated by Raman scattering spectra, Journal of Applied Physics, 2000, vol. 87, issue 9, pp. 4410-4414. DOI: 10.1063/1.373085.