Effect of electron channeling in the crystal lattice of radiant spherulites
M.V. Staritsyn1, V.P. Pronin2, I.I. Khinich2, A.N. Krushelnitsky2, S.V. Senkevich2,3, E.Y. Kaptelov3, I.P. Pronin3
1 NRC «Kurchatov institute» – CRISM «Prometey»
2 Herzen University
3 Ioffe Institute
DOI: 10.26456/pcascnn/2024.16.289
Original article
Abstract: The paper presents the results of the microstructure study of spherulitic islands in thin films of lead zirconate titanate, characterized by either a non-uniform radial rotation of the crystal lattice (radiant microstructure) or a uniform rotation, which allows one to detect Kikuchi lines of electron channeling. Thin lead zirconate titanate films were obtained by a two-stage method of radio-frequency magnetron sputtering of a ceramic target: deposition onto a «cold» platinized silicon and glassceram substrates, followed by high-temperature annealing to obtain islands of the perovskite phase surrounded by a matrix of the low-temperature pyrochlore phase. To study the cross section, a lamella was prepared, the study of the microstructure of which showed that the rotation of the crystal lattice in the perovskite spherulite occurs uniformly throughout the entire thickness, and it is not a manifestation of some near-surface effects. It was found that the rate of rotation of the crystal lattice in spherulites with a radial-radiant structure is approximately two times less than in spherulites with a radiallyuniform rotation; a model of translational rotation of the crystal lattice with the formation of dislocations and partial relaxation of mechanical stresses is proposed; it is assumed that the lattice rotation velocity is limited by the elasticity limit of the thin film. It is assumed that the Kikuchi image in spherulitic islands consisting of crystalline grains is determined by both the identical growth texture and the orientational correlation of the grains in the plane of the film; an analysis and interpretation of Kikuchi electron channeling lines has been carried out, which makes it possible to determine the orientation of the crystal lattice planes and growth axes in thin films.
Keywords: thin films of lead zirconate titanate, spherulites, radially-radiant microstructure, electron Kikuchi channeling
- Mikhail V. Staritsyn – Engineer, NRC «Kurchatov institute» – CRISM «Prometey»
- Vladimir P. Pronin – Dr. Sc., Docent, Professor, Department of Theoretical Physics and Astronomy, Herzen University
- Iosef I. Khinich – Dr. Sc., Docent, Professor, Department of Physical Electronics, Herzen University
- Artemy N. Krushelnitsky – Ph. D., Docent, Department of Methods of Teaching Physics, Herzen University
- Stanislav V. Senkevich – Researcher, Herzen University, Ph. D., Senior Researcher Ioffe Institute
- Evgeny Y. Kaptelov – Ph. D., Senior Researcher, Ioffe Institute
- Igor P. Pronin – Dr. Sc., Senior Researcher, Leading Researcher, Ioffe Institute
Reference:
Staritsyn M.V., Pronin V.P., Khinich I.I., Krushelnitsky A.N., Senkevich S.V., Kaptelov E.Y., Pronin I.P. Effekt kanalirovaniya elektronov v kristallicheskoj reshetke luchistykh sferolitov [Effect of electron channeling in the crystal lattice of radiant spherulites], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2024, issue 16, pp. 289-300. DOI: 10.26456/pcascnn/2024.16.289. ⎘
Full article (in Russian): download PDF file
References:
1. Shtukenberg A.G., Punin Y.O., Gunn E., Kahr B. Spherulites, Chemical Reviews, 2012, vol. 112, issue 3, pp. 1805-1838. DOI: 10.1021/cr200297f.
2 Shtukenberg A.G., Punin Yu.O., Gujral A., Kahr B. Growth actuated bending and twisting of single crystals, Angewandte Chemie International Edition, 2014, vol. 53, issue 3, pp. 672-699. DOI: 10.1002/anie.201301223.
3. Kolosov V.Yu., Thö1én A.R. Transmission electron microscopy studies of the specific structure of crystals formed by phase transition in iron oxide amorphous films, Acta Materialia, 2000, vol. 48, issue 8, pp. 1829-1840. DOI: 10.1016/S1359-6454(99)00471-1.
4. Zhigalina O.M., Khmelenin D.N, Valieva Yu.A. et al. Structural features of PLZT films, Crystallography Reports, 2018, vol. 63, issue 4, pp. 620-629. DOI: 10.1134/S1063774518040314.
5. Lutjes N.R., Zhou S., Antoja-Lleonart J. et al. Spherulitic and rotational crystal growth of Quartz thin films, Scientific Reports, 2021, vol. 11, issue 1, art. no. 14888, 12 p. DOI: 10.1038/s41598-021-94147-y.
6. Musterman E.J., Dierolf V., Jain H. Curved lattices of crystals formed in glass, International Journal of Applied Glass Science, 2022, vol. 13, issue 3, pp. 402-419. DOI: 10.1111/ijag.16574.
7. Sun W., Zhou W. Growth mechanism and microstructures of Cu2O/PVP spherulites, RSC Advances, 2022, vol. 12, issue 31, pp. 20022-20028. DOI: 10.1039/d2ra03302j.
8. Elshin A.S., Pronin I.P., Senkevich S.V., Mishina E.D. Nonlinear optical diagnostics of thin polycrystalline lead zirconate titanate films, Technical Physics Letters, 2020, vol. 46, issue 4, pp. 385-388. DOI: 10.21883/PJTF.2020.08.49306.18142.
9. Da B., Cheng L., Liu X. et al. Cylindrically symmetric rotating crystals observed in crystallization process of InSiO film, Science and Technology of Advanced Materials: Methods, 2023, vol. 3, issue 1, art. no. 2230870, 14 p. DOI: 10.1080/27660400.2023.2230870I.
10. Elshin A., Staritsyn M., Pronin I. et al. Nonlinear optics for crystallographic analysis in lead zirconate titanate, Coatings, 2023, vol. 13, issue 2, art. no. 247, 12 p. DOI: 10.3390/coatings13020247.
11. Staritsyn M.V., Kiselev D.A., Pronin V.P. et al. Osobennosti mikrostruktury i svojstv tonkikh sferolitovykh plenok TsTS, sformirovannykh dvukhstadijnym metodom vysokochastotnogo magnetronnogo osazhdeniya [Peculiarities of the microstructure and properties of thin spherolitic PZT films formed by a two-stage radiofrequency magnetron deposition method], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 196-206. https://doi.org/10.26456/pcascnn/2023.15.196.
12. Staritsyn M.V., Pronin V.P., Khinich I.I. et al. Microstructure of spherulitic lead zirconate titanate thin films, Physics of the Solid State, 2023, vol. 65, issue 8, pp. 1312-1318. DOI: 10.21883/FTT.2023.08.56155.140.
13. Alkoy E.M., Alkoy S., Shiosaki T. The effect of crystallographic orientation and solution aging on the electrical properties of sol-gel derived Pb(Zr0.45Ti0.55)O3 thin films, Ceramic International, 2007, vol. 33, issue 8, pp.1455-1462. DOI: 10.1016/j.ceramint.2006.06.010.
14. Staritsyn M.V. Anomalous electron channeling in PZT thin films. Kondensirovannye Sredy I Mezhfaznye Granitsy [Condensed Matter and Interphases], 2023, vol. 25, no. 4, pp. 572-580. DOI: 10.17308/kcmf.2023.25/11481.
15. Nazeer H., Nguyen M.D., Sukas O.S. et al. Compositional dependence of the Young’s modulus and piezoelectric coefficient of (110)-oriented pulsed laser deposited PZT thin films, Journal of Microelectromechanical Systems, 2015, vol. 24, issue 1, pp. 166-173. DOI: 10.1109/jmems.2014.2323476.
16. Bartolomé J., Hidalgo P., Maestre D. In-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications, Applied Physics Letters, 2014, vol. 104, issue 16, pp. 161909-1-161909-5DOI: 10.1063/1.4872461.
17. Yagnamurthy S., Chasiotis I., Lambros J. et al. Mechanical and ferroelectric behavior of PZT-based thin films, Journal of Microelectromechanical Systems, 2011, vol. 20, issue 6, pp. 1250-1258. DOI: 10.1109/JMEMS.2011.2167666.
18. Afanasjev V.P., Mosina G.N., Petrov A.A. et al. Specific properties of the PZT-based thin-film capacitor structures with excess lead oxide, Technical Physics Letters, 2001, vol. 27, issue 6, pp. 467-469. DOI: 10.1134/1.1383827.