Features of the defect structure of LiNbO3:Cu crystals and their manifestation in the IR absorption spectrum in the region of stretching vibrations of hydrogen atoms OН– -group
N.V. Sidorov1, L.A. Bobreva1,2, M.N. Palatnikov1, A.Yu. Pyatyshev3, M.K. Tarabrin4, A.A. Bushunov4
1 Tananaev Institute of Chemistry Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
2 Murmansk Arctic University
3 P.N. Lebedev Physical Institute of the Russian Academy of Sciences
4 Bauman Moscow State Technical University
DOI: 10.26456/pcascnn/2024.16.277
Original article
Abstract: LiNbO3:Cu (0,005 wt.%), LiNbO3:Cu (0,015 wt.%), LiNbO3:Cu (0,022 wt.%), LiNbO3:Cu (0,042 wt.%), LiNbO3:Cu (0,46 wt.%) crystals were studied by IR absorption spectroscopy in the region of stretching vibrations of OH–-groups. These crystals were grown by the Czochralski method using the technology of direct doping of a charge of congruent composition. It has been established that the recorded absorption bands in the infrared spectrum in the frequency range 3469-3490 cm-1 are associated with a deviation in the composition of the LiNbO3:Cu crystal from the stoichiometric one. Such changes occur due to a deficiency of Li+ cations in the crystal structure. The incorporation of Cu2+ dopant leads to disordering of the cation sublattice and noticeable deformation of oxygen octahedra. This occurs due to an increase in the O–O bond lengths. In this case, a newabsorption band with a frequency of 3487 cm-1, corresponding to the VLi-OH complex defect, is recorded in the IR spectrum. Calculation of the volume concentration of OH–– groups showed the highest value for crystals ofLiNbO3:Cu (0,005 wt.%), LiNbO3:Cu (0,015 wt.%), LiNbO3:Cu (0,022 wt.%). These changes occur due to the simultaneous formation of two types of complex defects in the crystal structure: Cu+-OH-Cu3- and VLi-OH. A change in the mechanism of entry of a doping impurity into the structure of a LiNbO3:Cu crystal (0,042 wt.%) leads to a decrease in the concentration of OH–– groups.
Keywords: lithium niobate, photorefractive impurity, point defects, complex defects, infrafed spectroscopy
- Nikolay V. Sidorov – Dr. Sc., Professor, Chief Researcher and as Head of Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
- Lyubov A. Bobreva – Ph. D., Researcher, Vibrational Spectroscopy Sector of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Assistant Professor, Department of Physics, Biology and Engineering Technologie Murmansk Arctic University
- Mikhail N. Palatnikov – Dr. Sc., Chief Researcher and as Head of the Electronic Engineering Materials Laboratory, Tananaev Institute of Chemistry Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
- Alexander Yu. Pyatyshev – Ph. D., Senior Researcher, Raman laboratories, P.N. Lebedev Physical Institute of the Russian Academy of Sciences
- Mikhail K. Tarabrin – Ph. D., Researcher, Bauman Moscow State Technical University
- Andrey A. Bushunov – Researcher, Bauman Moscow State Technical University
Reference:
Sidorov, N.V. Features of the defect structure of LiNbO3:Cu crystals and their manifestation in the IR absorption spectrum in the region of stretching vibrations of hydrogen atoms OН– -group / N.V. Sidorov, L.A. Bobreva, M.N. Palatnikov, A.Yu. Pyatyshev, M.K. Tarabrin, A.A. Bushunov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 277-288. DOI: 10.26456/pcascnn/2024.16.277. (In Russian).
Full article (in Russian): download PDF file
References:
1. Kovács L., Corradi G. New trends in lithium niobate: from bulk to nanocrystals, Crystals, 2021, vol. 11, issue 11, art. no. 1356, 4 p. DOI: 10.3390/cryst11111356.
2. Qi Y., Li Y. Integrated lithium niobate photonics, Nanophotonics, 2020, vol.9, issue 6, pp. 1287-1320. DOI: 10.1515/nanoph-2020-0013.
3. Sidorov N.V., Volk T.P., Mavrin B.N., Kalinnikov V.T. Niobat litiya: defekty, fotorefraktsiya, kolebatel'nyi spektr, polyaritony [Lithium niobate: defects, photorefraction, vibrational spectrum, polaritons]. Moscow, Nauka Publ., 2003, 255 p. (In Russian).
4. Palatnikov M.N., Sidorov N.V., Makarova O.V., Biryukova I.V. Fundamental'nye aspekty tekhnologii sil'no legirovannykh kristallov niobata litiya [Fundamental aspects of the technology of heavily doped lithium niobate crystals]. Apatity, KSC RAS Publ., 2017, 241 p. (In Russian).
5. Lengyel K., Péter Á., Kovács L. et al. Growth, defect structure, and THz application of stoichiometric lithium niobate, Applied Physics Reviews, 2015, vol. 2, issue 4, pp. 040601-1-040601-28. DOI: 10.1063/1.4929917.
6. Shur V.Ya., Akhmatkhanov A.R., Baturin I.S. Micro- and nano-domain engineering in lithium niobate, Applied Physics Reviews, 2015, vol. 2, issue 4, pp. 040604-1-040604-22. DOI: 10.1063/1.4928591.
7. Iyi N., Kitamura K., Izumi F. et al. Comparative study of defect structures in lithium niobate with different compositions, Journal of Solid State Chemistry, 1992, vol. 101, issue 2, pp. 340-352. DOI: 10.1016/0022-4596(92)90189-3.
8. Cabrera J.M., Olivares J., Carrascosa M. et al. Hydrogen in lithium niobate, Advances in Physics, 1996, vol. 45, issue 5, pp. 349-392. DOI: 10.1080/00018739600101517.
9. Kovács L., Rebouta L., Soarest J. C. et al. On the lattice site of trivalent dopants and the structure of Mg2+ - OH- M 3+ defects in LiNbO3:Mg crystals, Journal of Physics: Condensed Matter, 1993, vol. 5, issue 7, pp. 781-794. DOI: 10.1088/0953-8984/5/7/006.
10. Kaczmarek S.M. Thermal and radiation stability of pure and doped with Cu, Fe and Cr ions lithium niobate single crystals for optical applications, Ferroelectrics, 2001, vol. 256, issue 1, pp. 175-188. DOI: 10.1080/00150190108015982.
11. Pracka I., Bajor A. L., Kaczmarek S. M. et al. Growth and characterization of LiNbO3 single crystals doped with Cu and Fe ions, Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 2019, vol. 34, issue 5‐6, pp. 627-634. DOI: 10.1002/(SICI)1521-4079(199906)34:5/6<627::AID-CRAT627>3.0.CO;2-0.
12. Sugak D., Yakhnevych U., Syvorotka I.I. et al. Optical investigation of the OH− groups in the LiNbO3 doped by copper, Integrated Ferroelectrics, 2019, vol. 196, issue 1, pp. 32-38. DOI: 10.1080/10584587.2019.1591981.
13. Kruk A.A., Sidorov N.V., Yanichev A.A. et al. Raman spectra of copper-doped lithium niobate crystals as a function of excitation wavelength, Journal of Applied Spectroscopy, 2014, vol. 81, issue 1, pp. 1-6. DOI: 10.1007/s10812-014-9878-9.
14. Sidorov N.V., Yanichev A.A., Gabain A.A. et al. Photorefractive properties of lithium niobate single crystals doped with copper, Journal of Applied Spectroscopy, 2013, vol. 80, issue 2, pp. 226-231. DOI: 10.1007/s10812-013-9750-3.
15. Abrahams S.C., Reddy J.M., Bernstein J.L. Ferroelectric lithium niobate. Single crystal X-ray diffraction study at 24 C, Journal of Physics and Chemistry of Solids, 1966, vol. 27, issue 6-7, pp. 997-1012. DOI: 10.1016/0022-3697(66)90072-2.
16. Li C.-Y., Cheng L.-B., Zheng X.-M. Investigations on the spin-Hamiltonian parameters and local structure of the orthorhombic Cu2+ center in PbTiO3 crystal, Acta Physica Polonica A, 2015, vol. 127, no. 6, pp. 1671-1674. DOI: 10.12693/APhysPolA.127.1671.
17. Zhang H.-M., Xiao W.-B. Investigations on the EPR parameters and defect structures due to Jahn-Teller effect for the Cu2+ and Ni+ centers in LiNbO3, Journal of Alloys and Compounds, 2018, vol. 745, pp. 586-591. DOI: 10.1016/j.jallcom.2018.02.209.
18. Teplyakova N.A., Sidorov N.V., Palatnikov M.N. Osobennosti defektnoj struktury monokristalla LiNbO3:Cu (0,015 mas.%) [Features of the defect structure of a LiNbO3:Cu (0,015 wt.%) single crystal], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 215-222. DOI: 10.26456/pcascnn/2023.15.215. (In Russian).
19. Klauer S., Wöhlecke M., Kapphan S. Influence of the H-D isotopic substitution on the protonic conductivity in LiNbO3 crystal, Physical Review B, 1992, vol. 45, issue 6, pp. 2786-2799. DOI: 10.1103/physrevb.45.2786.
20. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, 1976, vol. 32, issue 5, pp. 751-767. DOI: 10.1107/S0567739476001551.
21. Kuang M.-Q., Wu S.-Y., Zhang H.-M. Theoretical studies on the local structure and spin Hamiltonian parameters for the orthorhombic Cu2+ center in LiNbO3, Optik, 2012, vol. 123, issue 18, pp 1601-1604. DOI: 10.1016/j.ijleo.2011.08.032.
22. Tsuboi T., Grinberg M., Kaczmarek S.M. Site symmetries of Cu2+ ions in LiNbO3 crystals, Journal of Alloys and Compounds, 2002, vol. 341, issue 1-2, pp. 333-337. DOI: 10.1016/S0925-8388(02)00032-4.