Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Study of Co-Fe nanocomposite magnetic properties

A.Yu. Salomatina1,2, A.Yu. Fedotov1, O.Yu. Severyukhina1, F.A. Vinogradov2

1 Udmurt Federal Research Center UB RAS
2 Kalashnikov Izhevsk State Technical University

DOI: 10.26456/pcascnn/2024.16.267

Original article

Abstract: In this paper, a comparative analysis of the characteristics, advantages and disadvantages of five different types of magnetoresistive random access memories has been carried out. An optimal mathematical model for investigation of composition and structure of materials for spintronics devices is selected. A review of the combined mathematical model consisting of the molecular dynamics method and the model of spin dynamics of particles with interatomic interaction potential based on a modified embedded atom method is presented. An analysis is performed of modeling of magnetic properties of cobalt and iron bilayer film under conditions of the uniform external magnetic field. The iron layer was characterized by the formation of skirmions, while regions with different magnetic domains were found in the cobalt nanofilms. The overall magnetization of the Co-Fe system was found to be low due to the lack of the priority direction of the magnetic moment. The magnetizationrates of cobalt, iron of different thicknesses and the Co-Fe system as a whole were compared separately.

Keywords: spintronics, magnetoresistive random access memory, mathematical modeling, molecular dynamics, spin dynamics, modified embedded atom method, LAMMPS, skirmions

  • Anastasia Yu. Salomatina – 2nd year postgraduate student, Udmurt Federal Research Center UB RAS, Senior Lecturer Kalashnikov Izhevsk State Technical University
  • Aleksey Yu. Fedotov – Dr. Sc., Leading Researcher, Udmurt Federal Research Center UB RAS
  • Olesya Yu. Severyukhina – Ph. D., Researcher, Udmurt Federal Research Center UB RAS
  • Fedor A. Vinogradov – Leading engineer, Kalashnikov Izhevsk State Technical University

Reference:

Salomatina, A.Yu. Study of Co-Fe nanocomposite magnetic properties / A.Yu. Salomatina, A.Yu. Fedotov, O.Yu. Severyukhina, F.A. Vinogradov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 267-276. DOI: 10.26456/pcascnn/2024.16.267. (In Russian).

Full article (in Russian): download PDF file

References:

1. Dave, R.W. Toggle MRAM with CoFeB-based synthetic antiferromagnet free layers / R.W. Dave, J. Slaughter, S. Pietambaram et al. // Proceedings of IEEE International Magnetics Conference (INTERMAG), 08-12 May 2006, San Diego, CA, USA. – New York: IEEE Publ., 2006. – P. 398. DOI: 10.1109/INTMAG.2006.376122.
2. Bishnoi, R. Improving write performance for STT-MRAM / R. Bishnoi, M. Ebrahimi, F.Oboril, M.B. Tahoori // IEEE Transactions on Magnetics. – 2016. – V. 52. – I. 8. – P. 1-11. DOI: 10.1109/TMAG.2016.2541629.
3. Oh, Y.W. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ ferromagnet/ oxide structures / Y.W. Oh, S.H. Chris Baek, Y.M. Kim et al. // Nature Nanotechnology. – 2016. – V. 11. – I. 10. – P. 878-884. DOI: 10.1038/nnano.2016.109.
4. Prejbeanu, I.L. Thermally assisted MRAM / I.L. Prejbeanu, M. Kerekes, R.C. Sousa et al. // Journal of Physics: Condensed Matter. – 2007. – V. 19. – I. 16. – Art. № 165218. – 23 p. DOI: 10.1088/0953-8984/19/16/165218.
5. Zhu, D.Q. First demonstration of three terminal MRAM devices with immunity to magnetic fields and 10 ns field free switching by electrical manipulation of exchange bias / D.Q. Zhu, Z. X. Guo, A. Du et al. // Proceedings of IEEE International Electron Devices Meeting (IEDM), 11-16 December 2021, San Francisco, CA, USA. – New York: IEEE Publ., 2021. – P. 17.5.1-17.5.4. DOI: 10.1109/IEDM19574.2021.9720599.
6. Nahas, J. A 4Mb 0.18/spl mu/m 1T1MTJ toggle MRAM memory / J. Nahas, T. Andre, C. Subramanian et al. // Proceedings of IEEE International Solid-State Circuits Conference (IEEE Cat. No. 04CH37519), 15-19 February 2004, San Francisco, CA, USA. – New York: IEEE Publ., 2004. – P. 44-512. DOI: 10.1109/ISSCC.2004.1332585.
7. Prenat, G. Ultra-fast and high-reliability SOT-MRAM: From cache replacement to normally-off computing / G. Prenat, K. Jabeur, P. Vanhauwaert et al. // IEEE Transactions on Multi-Scale Computing Systems. – 2015. – V. 2. – I. 1. – P. 49-60. DOI: 10.1109/TMSCS.2015.2509963.
8. Apalkov, D. Spin-transfer torque magnetic random access memory (STT-MRAM) / D. Apalkov, A. Khvalkovskiy, S. Watts et al. // ACM Journal on Emerging Technologies in Computing Systems (JETC). – 2013. – V. 9. – I. 2. – P. 1-35. DOI: 10.1145/2463585.2463589.
9. Paquet, E. Molecular dynamics, Monte Carlo simulations, and Langevin dynamics: a computational review / E. Paquet, H.L. Viktor // BioMed Research International. – 2015. – V. 2015. – Art. ID 183918. – 18 p. DOI: 10.1155/2015/183918.
10. Antropov, V.P. Ab initio spin dynamics in magnets / V.P. Antropov, M.I. Katsnelson, M. Van Schilfgaarde, B.N. Harmon // Physical Review Letters. – 1995. – V. 75. – I. 4. – P. 729-732. DOI: 10.1103/PhysRevLett.75.729.
11. Baskes, M.I. Modified embedded-atom potentials for cubic materials and impurities / M.I. Baskes // Physical Review B. – 1992. – V. 46. – I. 5. – P. 2727-2742. DOI: 10.1103/PhysRevB.46.2727.
12. Tranchida, J. Massively parallel symplectic algorithm for coupled magnetic spin dynamics and molecular dynamics / J. Tranchida, S.J. Plimpton, P. Thibaudeau, A.P. Thompson // Journal of Computational Physics. – 2018. – V. 372. – P. 406-425. DOI: 10.1016/j.jcp.2018.06.042.
13. Kang, W. Skyrmion-electronics: An overview and outlook / W. Kang, Y. Huang, X. Zhang et al. // Proceedings of the IEEE. – 2016. – V. 104. – I. 10. – P. 2040-2061. DOI: 10.1109/JPROC.2016.2591578.
14. Soloviev, I.I. Superconducting circuits without inductors based on bistable Josephson junctions / I.I. Soloviev, V.I. Ruzhickiy, S.V. Bakurskiy et al. // Physical Review Applied. – 2021. – V. 16. – I. 1. – P. 014052-1-014052-11. DOI: 10.1103/PhysRevApplied.16.014052.
15. Vozhakov, V.A. State control in superconducting quantum processors / V.A. Vozhakov, M.V. Bastrakova, N.V. Klenov et al. // Physics-Uspekhi. – 2022. – V. 192. – I. 5. – P. 457-476. DOI: 10.3367/UFNr.2021.02.038934.

⇐ Prevoius journal article | Content | Next journal article ⇒