Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Magnetic properties and magnetic reversal processes of the Sm-Gd-Zr-Co-Cu-Fe alloys

P.A. Rakunov, M.B. Lyakhova, E.M. Semenova, A.Yu. Karpenkov

Tver State University

DOI: 10.26456/pcascnn/2024.16.258

Original article

Abstract: The results of experimental studies of magnetic properties and magnetization reversal processes of a series of alloys Sm-Gd-Zr-Co-Cu-Fe are presented. The studied samples were subjected to prolonged isothermal annealing for 24 hours, which made it possible to achieve the formation of a certain nanostructure that affects the hysteresis properties of the material and allows to achieve a high coercivity state. According to the magnetic measurements data obtained by the method of a vibrating magnetometer, the hysteresis loops are constructed, the dependence of the saturation magnetization, and the coercive force on chemical composition, and the values of the temperature coefficient of magnetization change depending on the relative content of Sm and Gd are determined. It is shown that the substitution of a part of samarium atoms for gadolinium atoms increases the effect of the mechanism of irreversible rotation of the spontaneous magnetization vector on the remagnetization of samples. Application of the studied samples in various devices puts serious demands on the stability of their magnetic properties at high temperatures. Our researches allow us to conclude that compounds with gadolinium concentration x=0,5 have the greatest coercive force, and compounds with gadolinium concentration in the range x=0,5-0,6 have the highest temperature stability.

Keywords: rare earth intermetallic compounds, hard magnetic materials, hysteresis, coercive force, magnetization, magnetization reversal processes

  • Pavel A. Rakunov – 3rd year postgraduate student, Assistant, Condensed Matter Physic Department, Tver State University
  • Marina B. Lyakhova – Ph. D., Docent, Senior Researcher, Condensed Matter Physics Department, Tver State University
  • Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
  • Alexey Yu. Karpenkov – Ph. D., Docent, Head of Condensed Matter Physics Department, Tver State University

Reference:

Rakunov, P.A. Magnetic properties and magnetic reversal processes of the Sm-Gd-Zr-Co-Cu-Fe alloys / P.A. Rakunov, M.B. Lyakhova, E.M. Semenova, A.Yu. Karpenkov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 258-266. DOI: 10.26456/pcascnn/2024.16.258. (In Russian).

Full article (in Russian): download PDF file

References:

1. Coey J.M.D. Perspective and prospects for rare earth permanent magnets, Engineering, 2020, vol. 6, issue 2, pp. 119-131. DOI: 10.1016/j.eng.2018.11.034.
2. Jha A.R. Rare earth materials: properties and applications, Boca Raton, London, New York, CRC Press, 2014, 371 p. DOI: 10.1201/b17045.
3. Liu S. Sm–Co high-temperature permanent magnet materials, Chinese Physics B., 2019, vol. 28 issue 1, pp. 017501-1-017501-20. DOI: 10.1088/1674-1056/28/1/017501.
4. Golovnia O.A., Popov A.G., Mushnikov N.V. et al. Hard magnetic properties and the features of nanostructure of high-temperature Sm-Co-Fe-Cu-Zr magnet with abnormal temperature dependence of coercivity, Nanomaterials, 2023, vol. 13, issue 13, art. no. 1899, 14 p. DOI: 10.3390/nano13131899.
5. Duerrschnabel M., Yi M., Uestuener K. et al. Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets, Nature Communications, 2017, vol. 8, issue 1, art. no. 54, 7 p. DOI: 10.1038/s41467-017-00059-9.
6. Semenova E.M., Lyakhova M.B., Ivanova A.I., Ulyanov M.N. Micro- and nanostructures of RCoCuFeZr heterogeneous alloys with high temperature stability, Materials Science Forum, 2016, vol. 845, pp. 46-49. DOI: 10.4028/www.scientific.net/MSF.845.46.
7. Horiuchi Y., Hagiwara M., Endo M., Sanada N., Sakurada S. Influence of intermediate-heat treatment on the structure and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnets, Journal of Applied Physics, 2015, vol. 117, issue 17, art. no. 17C704, 4 p. DOI: 10.1063/1.4906757.
8. Sepehri-Amin H., Thielsch J., Fischbacher J. et al. Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets, Acta Materialia, 2017, vol. 126, pp. 1-10. DOI: 10.1016/j.actamat.2016.12.050.
9. Song K., Sun W., Chen H. et al. Revealing on metallurgical behavior of iron-rich Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 sintered magnets, AIP Advances, 2017, vol. 7, issue 5, art. no. 056238, 7 p. DOI: 10.1063/1.4978464.
10. Dormidontov A.G., Kolchugina N.B., Dormidontov N.A., Milov Yu.V. Structure of alloys for (Sm,Zr)(Co,Cu,Fe)z permanent magnets: First level of heterogeneity, Materials, 2020, vol. 13, issue 17, art. no. 3893, 18 p. DOI: 10.3390/ma13173893.
11. Jiang C.B., An S.Z. Recent progress in high temperature permanent magnetic materials, Rare Metals, 2013, vol. 32, issue 5, pp. 431-440. DOI: 10.1007/s12598-013-0162-6.
12. Lyakhova M. B., Semenova E.M., Ivanov R.P. High-temperature behavior of hard magnetic alloys (R,Zr)(Co,Cu,Fe)z (R= Sm, Gd), Metal Science and Heat Treatment, 2015, vol. 56, issue 11-12, pp. 602-608. DOI: 10.1007/s11041-015-9807-4.
13. Lyakhova M.B., Semenova E.M., Rakunov P.A. et al. Struktura i magnitnye svoistva splavov (R,Zr)(Co,Cu, Fe)Z (R = Sm, Gd) [Hysteresis structure and magnetic properties of (R, Zr)(Co, Cu, Fe)Z (R = Sm, Gd) alloys], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 169-177. DOI: 10.26456/pcascnn/2023.15.169.
14. Semenova E. M., Lyakhova M. B., Rakunov P.A., Karpenkov A. Yu., Konyukhov Yu. V. Mechanisms of Magnetic Hysteresis in Heterogeneous Gd‒Zr‒Co‒Cu‒Fe Alloys, Bulletin of the Russian Academy of Sciences: Physics, 2024, vol. 88, issue 5, pp. 802-808. DOI: 10.1134/S1062873824706639.

⇐ Prevoius journal article | Content | Next journal article ⇒