Adsorption of barium on surface of GaN(0001)
M.N. Lapushkin
Ioffe Institute
DOI: 10.26456/pcascnn/2024.16.210
Original article
Abstract: For the first time, the adsorption of barium atoms on the surface of the (0001) face of GaN was calculated using the density functional method. The 2D GaN layer was modeled using a GaN(0001) 2×2 supercell containing 10 GaN bilayers. The electron density of state and the adsorption energy of the Ba atom were calculated for five adsorption sites of the Ba atom: in the hollow position, in the bridge position between the surface Ga (N) atoms, and above the surface Ga (N) atom. There was one Ba atom per 4 surface Ga atoms in the first GaN bilayer. The adsorption of the barium atom above the surface N atom was most preferable. The adsorption energy was 2,96 eV. The adsorption of Ba atoms resulted in an insignificant reconstruction of the GaN surface: the maximum shift of the Ga (N) atoms did not exceed 0,11 Å. The adsorption of Ba resulted in the formation of a surface band below the Fermi level.
Keywords: density functional method, electronic structure, interface, surface, adsorption, barium, GaN
- Mikhail N. Lapushkin – Ph. D., Docent, Senior Researcher, Ioffe Institute
Reference:
Lapushkin, M.N. Adsorption of barium on surface of GaN(0001) / M.N. Lapushkin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 210-218. DOI: 10.26456/pcascnn/2024.16.210. (In Russian).
Full article (in Russian): download PDF file
References:
1. Qian X., Zhou J., Chen G. Phonon-engineered extreme thermal conductivity materials, Nature Materials, 2021, vol. 20, issue 9, pp. 1188-1202. DOI: 10.1038/s41563-021-00918-3.
2. Buffolo M., Caria A., Piva F. et al. Defects and reliability of GaN‐based LEDs: review and perspectives, Physica Status Solidi (a), 2022, vol. 219, issue 8, art. no. 2100727, 25 p. DOI: 10.1002/pssa.202100727.
3. Emon A.I., Mirza, A. B., Kaplun, J. et al. A review of high-speed GaN power modules: state of the art, challenges, and solutions, IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, vol. 11, issue 3, pp. 2707-2729. DOI: 10.1109/JESTPE.2022.3232265.
4. Sun R., Lai J., Chen W., Zhang B. GaN power integration for high frequency and high efficiency power applications: a review, IEEE Access, 2020, vol. 8, pp. 15529-15542. DOI: 10.1109/ACCESS.2020.2967027.
5. Kozak J.P., Zhang R., Porter M. et al. Stability, reliability, and robustness of GaN power devices: a review, IEEE Transactions on Power Electronics, 2023, vol. 38, issue 7, pp. 8442-8471. DOI: 10.1109/TPEL.2023.3266365.
6. Zhang Y., Xu R., Kang Q. et al. Recent advances on gan-based micro-leds, Micromachines, 2023, vol. 14, issue 5, art. no. 991, 19 p. DOI: 10.3390/mi14050991.
7. Behringer M., König H. Blue high‐power laser diodes‐‐beam sources for novel applications: overview and outlook, PhotonicsViews, 2020, vol. 17, issue 2, pp. 60-63. DOI: 10.1002/phvs.202000018.
8. Bermudez V.M. The fundamental surface science of wurtzite gallium nitride, Surface Science Reports, 2017, vol. 72, issue 4, pp. 147-315. DOI: 10.1016/j.surfrep.2017.05.001.
9. Northrup J.E. Incorporation of beryllium on the clean and indium-terminated GaN (0001) surface, Applied Physics Letters, 2001, vol. 78, issue 19, pp. 2855-2857. DOI: 10.1063/1.1368369.
10. Lyons J.L., Alkauskas A., Janotti A., Van de Walle C.G. First‐principles theory of acceptors in nitride semiconductors, Physica Status Solidi (b), 2015, vol. 252, issue 5, pp. 900-908. DOI: 10.1016/j.cossms.2024.101148.
11. Reshchikov M.A. Photoluminescence from vacancy‐containing defects in GaN, Physica Status Solidi (a), 2023, vol. 220, issue 10, art. no. 2200402, 8 p. DOI: 10.1002/pssa.202200402.
12. Sun Q., Selloni A., Myers T.H., Doolittle W.A. Energetics of Mg incorporation at GaN (0001) and GaN (000 1 ) surfaces, Physical Review B, 2006, vol. 73, issue 15, art. no. 155337, 9 p. DOI: 10.1103/PhysRevB.73.155337.
13. Al Balushi Z.Y, Wang K., Ghosh R.K. et al. Two-dimensional gallium nitride realized via grapheme encapsulation, Nature Materials, 2016, vol. 15, issue 11, pp. 1166-1171. DOI: 10.1038/nmat4742.
14. Cui Z., Wang X., Li M. et al. Tuning the optoelectronic properties of graphene-like GaN via adsorption for enhanced optoelectronic applications, Solid State Communications, 2019, vol. 296, pp. 26-31. DOI: 10.1016/j.ssc.2019.04.010.
15. Benemanskaya G.V., Timoshnev S.N., Ivanov S.V et al. Modification of the electronic structure and formation of an accumulation layer in ultrathin Ba/n-GnN and Ba/n-AlGaN interfaces, Journal of Experimental and Theoretical Physics, 2014. vol. 118, issue 4, pp. 600-610. DOI: 10.1134/S1063776114040098.
16. Benemanskaya G. V., Frank-Kamenetskaya G.É., Journal of Experimental and Theoretical Physics Letters, 2005, vol. 81, issue 10, pp. 519–522 DOI: 10.1134/1.1996761.
17. Hintze F., Hummel F., Schmidt P.J. et al. Ba3Ga3N5: а novel host lattice for Eu2+-doped luminescent materials with unexpected nitridogallate substructure, Chemistry of Materials, 2012, vol. 24, issue 2, pp. 402-407. DOI: 10.1021/cm203323u.
18. Giannozz, P., Baroni S., Bonini N. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 2009, vol. 21, no. 39, art. no. 395502,19 p. DOI: 10.1088/0953- 8984/21/39/395502.
19. Perdew J.P., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, 1981, vol. 23, issue 10, pp. 5048-5079. DOI: 10.1103/PhysRevB.23.5048.
20. Nishihara S. BURAI 1.3 A GUI of Quantum ESPRESSO. Available at: https://nisihara.wixsite.com/burai (accessed 16.07.2024).