An integrated approach to studying the structure of ternary CoCrMo alloy: scanning electron microscopy and atomistic simulation
D.A. Kravchenko, A.Yu. Kolosov, D.N. Sokolov, N.I. Nepsha, S.S. Bogdanov, N.Yu. Sdobnyakov
Tver State University
DOI: 10.26456/pcascnn/2024.16.198
Original article
Abstract: A comparative study combining the experimental technique of scanning electron microscopy and atomistic simulation by (molecular dynamics) was carried out using of the ternary CoCrMo nanoalloy as an example. Employing the technology of selective laser melting based on the PR-KH28M6 powder, a sample was made for which a non-uniform surface composition with respect to the presence of cobalt and chromium was identified, i.e. areas were simultaneously enriched and depleted in these elements, which indicates the possibility of forming various intermetallic compounds based on them. In the process of atomistic simulation, three nanoparticles of the ternary CoCrMo nanoalloy with the number of 10000, 15000 and 30000 atoms were subjected to a sequential cycle of heating and cooling, including the identification of phase transitions corresponding to melting and crystallization, respectively. The corresponding temperatures of the beginning and end of the phase transition were determined. The regularities of structural and surface segregation in the ternary CoCrMo nanoalloy are described. It is noted that for nanoparticles containing 10000 atoms, only a shell of cobalt atoms is formed without forming a core, while for nanoparticles containing 15000 and 30,000 atoms, an onion-like structure is formed. Chromium atoms form either the core of the nanoparticle as at N=10000 or the peripheral region as at N=15000 and 30000. Molybdenum atoms behave indifferently, i.e. are distributed uniformly throughout the entire volume of the nanoparticles under study.
Keywords: ternary CoCrMo alloy, selective laser melting technology, surface microstructure, molecular dynamics method, structural and surface segregation
- Daria A. Kravchenko – 1st year postgraduate student, General Physics Department, Tver State University
- Andrei Yu. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
- Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University
- Nikita I. Nepsha – 4th year postgraduate student, General Physics Department, Tver State University
- Sergei S. Bogdanov – Ph. D., Researcher, General Physics Department, Tver State University
- Nickolay Yu. Sdobnyakov – Dr. Sc., Docent, General Physics Department, Tver State University
Reference:
Kravchenko, D.A. An integrated approach to studying the structure of ternary CoCrMo alloy: scanning electron microscopy and atomistic simulation / D.A. Kravchenko, A.Yu. Kolosov, D.N. Sokolov, N.I. Nepsha, S.S. Bogdanov, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 198-209. DOI: 10.26456/pcascnn/2024.16.198. (In Russian).
Full article (in Russian): download PDF file
References:
1. Yang L., Hsu K, Baughman B., et al. Additive manufacturing of metals: the technology, materials, design and production, Springer Series in Advanced Manufacturing. Cham, Springer, 2017, VII+168 p. DOI: 10.1007/978-3-319-55128-9.
2. Zglobicka I., Chmielewska A., Topal E. et al. 3D diatom–designed and selective laser melting (SLM) manufactured metallic structures, Scientific Reports, 2019, vol. 9, art. no. 19777, 9 p. DOI: 10.1038/s41598-019-56434-7.
3. Li K., Wang Z., Song K. et al Additive manufacturing of a Co-Cr-W alloy by selective laser melting: In-situ oxidation, precipitation and the corresponding strengthening effects, Journal of Materials Science & Technology, 2022, vol. 125, pp. 171-181. DOI: 10.1016/j.jmst.2022.01.036.
4. Wang Z., Scudino S., Eckert J., Prashanth K.G. Selective laser melting of nanostructured Al-Y-Ni-Co alloy, Manufacturing Letters, 2020, vol. 25, pp. 21-25. DOI: 10.1016/j.mfglet.2020.06.005.
5. Bogdanov S.S., Sdobnyakov N.Yu. Zakonomernosti strukturoobrazovaniya v binarnykh nanochastitsakh GTSK metallov pri termicheskom vozdejstvii: atomisticheskoe modelirovanie: monografiya [Patterns of structure formation in binary nanoparticles of fcc metals under thermal influence: atomistic modeling: monograph]. Tver, Tver State University Publ., 2023, 143 p.
6. Sdobnyakov N., Khort A., Myasnichenko V. et al. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles, Computational Materials Science, 2020, vol. 184, art. no. 109936, 12 p. DOI: 10.1016/j.commatsci.2020.109936.
7. Talyzin I.V., Samsonov V.M., Bogdanov S.S. et al. Identification of complex core-shell nanostructures from the radial distributions of the local density of components, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 307-320. DOI: 10.26456/pcascnn/2022.14.307. (In Russian).
8. Kravchenko D.A., Medvedeva O.N. Studies of the structure and properties of dental crowns made by selective laser melting and according to the technology of casting, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 652-661. DOI: 10.26456/pcascnn/2022.14.652. (In Russian).
9. Saprykina N.A., Saprykin A.A., Sharkeev Yu.P. et al.Formirovanie splava sistemy kobal't-khrom-molibden metodom selektivnogo lazernogo plavleniya [Formation of the cobalt-chromium-molybdenum system with the help of selective laser melting], Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2021, no. 2 (50), pp. 31-37. DOI: 10.18324/2077-5415-2021-2-31-37. (In Russian).
10. LAMMPS Molecular Dynamics Simulator. Available at: www.url: http://lammps.sandia.gov. (accessed 15.08.2023).
11. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
12. Karolewski M.A. Tight-binding potentials for sputtering simulations with fcc and bccmetals, Radiation Effects and Defects in Solids, 2001, vol. 153, issue 3, pp 239-255. DOI: /10.1080/10420150108211842.
13. Sokolov D.N., Sdobnyakov N.Yu., Savina K.G., Kolosov A.Yu., Myasnichenko V.S. Novye vozmozhnosti vysokoproizvoditel'nykh raschetov nanosistem s ispol'zovaniem programmnogo obespecheniya Metropolis [New opportunities for high-performance simulations of nanosystem using Metropolis software], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 624-638. DOI: 10.26456/pcascnn/2021.13.624. (In Russian).
14. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
15. Tashlykova-Bushkevich I.I., Stolyar I.A. Surface nanorelief of thin films of Al–Mn and Al–Ni alloys in the case of ion-assisted deposition on glass, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Technique, 2023, vol. 17, issue 2, pp. 338-351. DOI: 10.1134/S1027451023020179.
16. Wang A., Yan Y., Chen Z. et al. // Characterisation of the multiple effects of Sc/Zr elements in selective laser melted Al alloy, Materials Characterization, 2022, vol. 183, art. no. 111653, 9 p. DOI: 10.1016/j.matchar.2021.111653.
17. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
18. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H., et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
19. Veresov S.A., Savina K.G., Veselov A.D. et al. K voprosu izucheniya protsessov strukturoobrazovaniya v chetyrekhkomponentnykh nanochastitsakh [To the problem of investigating the processes of structure formation in four-component nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 371-382. DOI: 10.26456/pcascnn/2022.14.371. (In Russian).
20. Sdobnyakov N.Yu., Kolosov A.Yu., Sokolov D.N. et al. Kompleksnyj podkhod k modelirovaniyu plavleniya i kristallizatsii v pyatikomponentnykh metallicheskikh nanochastitsakh: molekulyarnaya dinamika i metod Monte-Karlo [Complex approach to the simulation of melting and crystallization in five-component metallic nanoparticles: molecular dynamics and the Monte Carlo method], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 589-601. DOI: 10.26456/pcascnn/2023.15.589. (In Russian).
21. Verlet L. Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967, vol. 159, issue 1, pp. 98-103. DOI: 10.1103/PhysRev.159.98.
22. Nosé S.A. Molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, vol. 52, issue 2, pp. 255-268. DOI: 10.1080/00268978400101201.
23. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
24. Suliz K.V., Kolosov A.Yu., Myasnichenko V.S. et al. Control of cluster coalescence during formation of bimetallic nanoparticles and nanoalloys obtained via electric explosion of two wires, Advanced Powder Technology, 2022, vol. 33, issue 3, art. no. 103518, 15 p. DOI: 10.1016/j.apt.2022.103518.
25. Ferrando R., Fortunelli A., Rossi G. Quantum effects on the structure of pure and binary metallic nanoclusters, Physical Review B, 2005, vol. 72, issue 8, pp. 085449-1-085449-9. DOI: 10.1103/PhysRevB.72.085449.