Ex-situ modification of nanostructured hydroxyapatite by colloidal CdS particles
N.S. Kozhevnikova1,2, E.A. Bogdanova1,3, V.M. Skachkov1, I.V. Baklanova1, A.P. Tyutyunnik1, L.Yu. Buldakova1, M.Yu. Yanchenko1, A.A. Yushkov2
1 Institute of Solid State Chemistry of the Ural Branch of RAS
2 Ural Federal University named after the first President of Russia B. N. Yeltsin
3 JSC «Giredmet»
DOI: 10.26456/pcascnn/2024.16.183
Original article
Abstract: The article discusses the possibility of obtaining functional composite materials with pronounced photocatalytic properties. A hybrid composite material based on nanoscale cadmium sulfide fixed on a matrix of hydroxyapatite obtained by precipitation from solution has been developed. The initial components and synthesized samples were certified using some modern physico-chemical analysis methods: X-ray phase analysis, energy dispersive X-ray analysis, Raman spectroscopy, scanning electron microscopy, the Brunauer-Emmett-Teller method. The functional characteristics of the developed composite material Ca10(PO4)6(OH)2-CdS, in particular, the photocatalytic activity under the action of ultraviolet or visible radiation, are investigated. The efficiency of using the developed composite material as a photocatalyst was evaluated by the rate of oxidation of p-dihydroxybenzene (hydroquinone). Based on experimental data obtained, the values of the constants of the reaction rate of photocatalytic oxidation of hydroquinone and the time of its half-conversion under various conditions (radiation, the presence of a catalyst) are calculated. It is proved that the developed composite material, which is a hydroxyapatite modified with colloidal CdS particles, has pronounced catalytic properties and is a promising material for use as a photocatalyst. A patent application has been filed for the developed composite material.
Keywords: cadmium sulfide, chemical condensation from aqueous solutions, hydroxyapatite, composite material, photocatalysis
- Natal’ya S. Kozhevnikova – Ph. D., Senior Researcher, Laboratory of inorganic synthesis, Institute of Solid State Chemistry of the Ural Branch of RAS, lecturer at Physical and colloid chemistry department Ural Federal University named after the first President of Russia B. N. Yeltsin
- Ekaterina A. Bogdanova – Ph. D., Senior Researcher, Laboratory of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS, Leading Researcher, Laboratory of electrochemical devices for hydrogen energy JSC «Giredmet»
- Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratory of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS
- Inna V. Baklanova – Ph. D., Senior Researcher, Laboratory of quantum chemistry and spectroscopy named after A.L. Ivanovsky, Institute of Solid State Chemistry of the Ural Branch of RAS
- Alexandr P. Tyutyunnik – Ph. D., Head of the Laboratory of structural and phase analysis, Institute of Solid State Chemistry of the Ural Branch of RAS
- Larisa Yu. Buldakova – Ph. D., Senior Researcher, Laboratory of physical-chemical methods of analysis, Institute of Solid State Chemistry of the Ural Branch of RAS
- Mikhail Yu. Yanchenko – Ph. D., Senior Researcher, Laboratory of physical-chemical methods of analysis, Institute of Solid State Chemistry of the Ural Branch of RAS
- Anton A. Yushkov – Ph. D., Researcher at the Department of Magnetism of Solids at the Institute of Natural Sciences and Mathematics, Ural Federal University named after the first President of Russia B. N. Yeltsin
Reference:
Kozhevnikova N.S., Bogdanova E.A., Skachkov V.M., Baklanova I.V., Tyutyunnik A.P., Buldakova L.Yu., Yanchenko M.Yu., Yushkov A.A. Ex-situ modifitsirovanie nanostrukturirovannogo gidroksiapatita kolloidnymi chastitsami CdS [Ex-situ modification of nanostructured hydroxyapatite by colloidal CdS particles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2024, issue 16, pp. 183-197. DOI: 10.26456/pcascnn/2024.16.183. ⎘
Full article (in Russian): download PDF file
References:
1. Yepseu A.P., Ngoudjou L.E.T, Tigwere G.A. et al. Hot injection synthesis of CuS decorated CdS and ZnS nanomaterials from metal thiosemicarbazone complexes as single source precursors: Application in the photocatalytic degradation of methylene blue, Inorganic Chemistry Communications, 2024, vol. 166, art. no. 112650. 10 p. DOI: 10.1016/j.inoche.2024.112650.
2. Alrababah Y.M., Sheng C.K. Wurtzite CdS ratio tunability on α-Fe2O3/CdS synergistic heterostructure for enhanced UV-induced photocatalytic decomposition of rhodamine 6G dye pollutant, Alexandria Engineering Journal, 2024, vol. 100, pp. 300-311. DOI: 10.1016/j.aej.2024.05.050.
3. Raju A.G., Rao B.D., Himabindu G., Botsa S.M. Fabrication of a heterostructure composite with CuO and FeS2 as efficient photocatalyst for decolourisation of brilliant green, Journal of Materials Research and Technology, 2022, vol. 17, pp. 2648-2656. DOI: 10.1016/j.jmrt.2022.01.166.
4. Zgura I., Preda N., Enculescu M. et al. Cytotoxicity, antioxidant, antibacterial, and photocatalytic activities of ZnO–CdS powders, Materials, 2020, vol. 13, issue 1, art. no 182, 17 p. DOI: 10.3390/ma13010182.
5. Pouretedal H.R., Basati S. Characterization and photocatalytic activity of ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS nanoparticles in mesoporous SBA-15, Iranian Journal of Chemistry and Chemical Engineering, 2015, vol. 34, issue 1, pp. 11-19. DOI: 10.30492/ijcce.2015.12617.
6. Aziz N.A.B., Sheng C.K. Impact of CuO loading for enhanced photocatalytic performance of CdS/CuO photocatalyst on rhodamine 6G dye decomposition under ultraviolet irradiation, Materials Letters, 2023, vol. 47, art. no. 134589. 4 p. DOI: 10.1016/j.matlet.2023.134589.
7. Khan M.D., Farooq M.H., Iqra F., Zulfiqar A., Rizwan M. Designing of visible light active composites of CuS and ZnO for improved photocatalytic performance under solar light irradiation, Optik, 2022, vol. 271, art. no. 170147. 9 p. DOI: 10.1016/j.ijleo.2022.170147.
8. Weldegebrieal G.K., Sibhatu A.K. Photocatalytic activity of biosynthesized α-Fe2O3 nanoparticles for the degradation of methylene blue and methyl orange dyes, Optik, 2021, vol. 241, art. no. 167226. 15 p. DOI: 10.1016/j.ijleo.2021.167226.
9. Huang W., Lu X., Jia D. et al. Characterization of structural, optical and photocatalytic properties of yttrium modified hematite (α-Fe2O3) nanocatalyst, Ceramics International, 2023, vol. 49, issue 15, pp. 25602-25611. DOI: 10.1016/j.ceramint.2023.05.101.
10. Hwang I.S., Manikandan V., Patil R.P. et al. Hydrogen-treated TiO2 nanorods decorated with bimetallic Pd–Co nanoparticles for photocatalytic degradation of organic pollutants and bacterial inactivation, ACS Applied Nano Materials, 2023, vol. 6, issue 3, pp. 1562-1572. DOI: 10.1021/acsanm.2c04160.
11. Duan X., Qian Y., Wu J. et al. Photocatalytic degradation of VOC waste gas in petrochemical sewage fields, Industrial & Engineering Chemistry Research, 2022, vol. 61, issue 51, pp. 18676-18684. DOI: 10.1021/acs.iecr.2c03272.
12. Sharmin F., Basith M.A. Highly efficient photocatalytic degradation of hazardous industrial and pharmaceutical pollutants using gadolinium doped BiFeO3 nanoparticles, Journal of Alloys and Compounds, 2022, vol. 901, issue 65, art. no. 163604. 12 p. DOI: 10.1016/j.jallcom.2021.163604.
13. Bora L.V. Solar photocatalytic pathogenic disinfection: fundamentals to state-of-the-art, Water Science and Engineering, 2022, vol. 16, issue 2, pp. 132-142. DOI: 10.1016/j.wse.2022.12.005.
14. Hossain Md.S., Sarkar S., Tarannum S. et al. Exploration of photo-catalytic activity of nano-hydroxyapatite based on the crystallographic parameters: Estimation of crystallite size using X-ray diffraction data, Journal of Saudi Chemical Society, 2023, vol. 27, issue 6, art. no. 101769. 13 p. DOI: 10.1016/j.jscs.2023.101769.
15. Singh H., Bokare A., Kumar A. et al. Formation of magnetite-based ceramic materials and their photocatalytic applications, Advanced Ceramics for Versatile Interdisciplinary Applications (Elsevier Series on Advanced Ceramic Materials), 2022, chapter 6, pp. 115-146. DOI: 10.1016/B978-0-323-89952-9.00016-6.
16. Liu Y., Liu Z., Huang D. et al. Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst, Coordination Chemistry Reviews, 2019, vol. 388, pp. 63-78. DOI: 10.1016/j.ccr.2019.02.031.
17. Aziz N.A., Sheng C.K., Jie H.J. Water remediation capability of cubic-phase CdS nanoparticles as photocatalyst on photodegradation of aqueous Rhodamine 6G dye under UV irradiation, Digest Journal of Nanomaterials and Biostructures, 2023, vol. 18, issue 1, pp. 203-210. DOI: 10.15251/DJNB.2023.181.203.
18. Sheng C.K., Aziz N.A.B., Alrababah Y.M. Annealing temperature-dependent CdS phase tunability in improving photocatalytic efficiency towards aquatic dye decomposition, Results in Materials, 2023, vol. 19, art. no. 100445. 6 p. DOI: 10.1016/j.rinma.2023.100445.
19. Sheng C.K., Alrababah Y.M. pH-induced wurtzite-zinc blende heterogeneous phase formation, optical properties tuning and thermal stability improvement of green synthesized CdS nanoparticles, Heliyon, 2023, vol. 9, art. no. e15908. 10 p. DOI: 10.1016/j.heliyon.2023.e15908.
20. Rempel A.A., Kozhevnikova N.S., Rempel S.V. Structure of cadmium sulfide nanoparticle micelle in aqueous olutions, Russian Chemical Bulletin, 2013, vol. 62, issue 2, pp. 398-402 DOI: 10.1007/s11172-013-0052-y.
21. Kozhevnikova N.S., Vorokh A.S., Uritskaya A.A. Cadmium sulfide nanoparticles prepared by chemical bath deposition, Russian Chemical Reviews, 2015, vol. 84, issue 3, pp. 225-250. DOI: 10.1070/rcr4452.
22. Vorokh A.S., Kozhevnikova N.S., Baklanova I.V. et al. Mechanism of the formationof photosensitive nanostructured TiO2 whith low content CdS nanoparticles, Doklady Physical Chemistry, 2016, vol. 467, issue 2, pp, 56-59. DOI: 10.1134/S0012501616040059.
23. Barinov S.M., Komlev V.S. Biokeramika na osnove fosfatov kal'tsiya [Calcium phosphate bioceramics]. Moscow, Nauka Publ., 2006, 204 p. (In Russian).
24. Velisoju V.K., Aytam H.P., Akula V. Selective hydrogenation and dehydrogenation using hydroxyapatite-based catalysts, Design and Applications of Hydroxyapatite-Based Catalysts. Weinheim, Wiley-VCH, 2022, chapter 7, pp. 241-268. DOI: 10.1002/9783527830190.ch7.
25. Nasr-Esfahani M., Fekri S. Alumina/TiO2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air, Reaction Kinetics, Mechanisms and Catalysis, 2012, vol. 107, issue 1, pp. 89-103. DOI: 10.1007/s11144-012-0457-x.
26. Navarro-Jaén S., Bobadilla L.F., Romero-Sarria F., Laguna O.H., Bion N., Odriozola J.A. Evaluation of the oxygen mobility in CePO4-supported catalysts: mechanistic implications on the water–gas shift reaction, Journal of Physical Chemistry C, 2020, vol. 124, issue 30, pp. 16391–16401. DOI: 10.1021/acs.jpcc.0c03649.
27. Tawfik A., Tan X., Elsamadony M. et al. Graphene/hydroxyapatite nano-composite for enhancement of hydrogen productivity from delignified duckweed, Fuel, 2022, vol. 330, art. no. 125537. 12 p. DOI: 10.1016/j.fuel.2022.125537.
28. Trung T.S., Minh N.C., Cuong H.N. et al. Valorization of fish and shrimp wastes to nano-hydroxyapatite/chitosan biocomposite for wastewater treatment, Journal of Science: Advanced Materials and Devices, 2022, vol. 7, issue 4, art. no. 100485. 9 p. DOI: 10.1016/j.jsamd.2022.100485.
29. Piccirillo C., Castro P.M.L. Calcium hydroxyapatite-based photocatalysts for environment remediation: characteristics, performances and future perspectives, Journal of Environmental Management, 2017, vol. 193, pp. 79-91. DOI: 10.1016/j.jenvman.2017.01.071.
30. Sahoo S.K., Das A.A., Deka D., Naik B., Sahoo N.K. Organic-inorganic hybrid hydroquinone bridged V-CdS/HAP/Pd-TCPP: A novel visible light active photocatalyst for phenol degradation, Journal of Molecular Liquids, 2021, vol. 339, art. no.116721. 12 p. DOI: 10.1016/j.molliq.2021.116721.
31. Yan T., Li N., Jiang Z., Guan W., Qiao Z., Huang B. Self-sacrificing template synthesis of CdS quantum dots/Cd-Hap composite photocatalysts for excellent H2 production under visible light, International Journal of Hydrogen Energy, 2018, vol. 43, issue 45, pp. 20616-20626. DOI: 10.1016/j.ijhydene.2018.09.093.
32. Xiaofang L., Tianhong X., Weifeng Y., Qiang W., Rongjiang Z. Hollow hydroxyapatite microspheres modified by CdS nanoparticles for efficiently photocatalytic degradation of tetracycline, Journal of the Taiwan Institute of Chemical Engineers, 2020, vol. 106, pp. 148-158. DOI: 10.1016/j.jtice.2019.10.023.
33. Sabirzyanov N.A., Bogdanova E.A., Khonina T.G. Sposob polucheniya suspenzii gidroksiapatita [A method of obtaining a suspension of hydroxyapatite]. Patent RF, no. 2406693, 2010. (In Russian).
34. Sabirzyanov N.A., Bogdanova E.A., Skachkov V.M. Sposob polucheniya suspenzii apatita [Method of preparing apatite suspension]. Patent RF, no. 2652193, 2018. (In Russian).
35. Kozhevnikova N.S., Vorokh A.S., Rempel' A.A. Preparation of stable colloidal solution of cadmium sulfide CdS using ethylendiaminetetraacetic acid, Russian Journal of General Chemistry, 2010, vol. 80, issue 3, pp. 391-394. DOI: 10.1134/S1070363210030035.
36. Bogdanova E.A., Skachkov V.М., Medyankina I.S. et al. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution, SN Applied Sciences, 2020, vol. 2, issue 9, art. no. 1565, 7 p. DOI: 10.1007/s42452-020-03388-5.