Thermopower of magnetoresistive composites based on La0,7Sr0,3MnO3
Yu.V. Kabirov1, A.A. Utoplov1, N.V. Lyanguzov1, E.N. Sidorenko1, N.V. Prutsakova2, E.V. Chebanova2
1 Southern Federal University
2 Don State Technical University
DOI: 10.26456/pcascnn/2024.16.164
Short communication
Abstract: The paper studies the dependence of the magnetoresistance and Seebeck coefficient of the composite magnetoresistive composition near the percolation threshold of 80%La0,7Sr0,3MnO3/20%GeO2 on the constant magnetic field strength up to 3,8 kOe and temperature in the range from 25°C to 150°C. The 80%La0,7Sr0,3MnO3/20%GeO2 samples have the p-type conductivity, a the positive sign of the Seebeck coefficient and a dielectric character of the change in the electrical resistance with temperature. The activation energy of such compositions is of about 0,35 eV. The magnetoresistance of such a composition decreases with an increase in the temperature difference between the hot and cold edges and disappears in the region of the phase transition temperatures of 90°C. It was found that in a constant external magnetic field of 3,8 kOe, a decrease in the Seebeck coefficient of the 80%La0,7Sr0,3MnO3/20%GeO2 compositions by 11% is observed at a temperature difference of 10 K. The dependence of the Seebeck coefficient on the magnetic field decreases with an increase in the hot edge temperature and also disappears in the temperature range of 90°C, which is associated with the ferromagnetic-paramagnetic phase transition of lanthanum manganite La0,7Sr0,3MnO3 and the suppression of spin-dependent electron tunneling.
Keywords: Seebeck coefficient, magnetoresistive composite, constant magnetic field, lanthanum- strontium manganite, percolation
- Yuri V. Kabirov – Dr. Sc., Professor, Department of General Physics, Southern Federal University
- Andrey A. Utoplov – 1st year graduate student, Department of Physics, Southern Federal University
- Nikolai V. Lyanguzov – Ph. D., Docent, Nanotechnology Department, Southern Federal University
- Evgeniy N. Sidorenko – Ph. D., Docent, Radiophysics Department, Southern Federal University
- Natalia V. Prutsakova – Ph. D., Docent, Physics Department, Don State Technical University
- Elena V. Chebanova – Ph. D., Docent, Physics Department, Don State Technical University
Reference:
Kabirov, Yu.V. Thermopower of magnetoresistive composites based on La0,7Sr0,3MnO3 / Yu.V. Kabirov, A.A. Utoplov, N.V. Lyanguzov, E.N. Sidorenko, N.V. Prutsakova, E.V. Chebanova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 164-170. DOI: 10.26456/pcascnn/2024.16.164. (In Russian).
Full article (in Russian): download PDF file
References:
1. Gridnev S.A., Kalinin Yu.E., Sitnikov A.V., Stogney O.V. Nelinejnye yavleniya v nano - i mikrogeterogennykh sistemakh [Nonlinear phenomena in nano- and microheterogeneous systems]. Moscow, Binom Publ., 2012, 352 p. (In Russian).
2. Volkov N.V. Spintronics: manganite-based magnetic tunnel structures, Physics-Uspekhi, 2012, vol. 55, no. 3, pp. 250-269. DOI: 10.3367/UFNr.0182.201203b.0263. (In Russian).
3. Kabirov Yu.V., Bogatin A.S., Lyanguzov N.V. et al. Negative magnetoresistance of composite ceramics (1-x)La0.67Sr0.33MnO3/x(GeO2, Li4P2O7), Technical Physics Letters, 2016, vol. 42, issue 3, pp. 278-279. DOI: 10.1134/S1063785016030214.
4. Ioffe A.F. Poluprovodnikovye termoelementy [Semiconductor thermoelements]. Moscow, Leningrad,. Academy of Sciences of the USSR Publ., 1956, 104 p. (In Russian).
5. Gridnev S.A., Kalinin Yu.E., Makagonov V.A., Shuvaev A.S. Perspektivnye termoelektricheskie materialy [Promising thermoelectric materials] Al'ternativnaya energetika i ekologiya [Alternative Energy and Ecology], 2013, no. 1-2 (118), pp. 117-125. (In Russian).
6. Koroleva L.I., Batashev I.K., Morozov A.S. et al. Relation of giant thermo-EMF, magnetothermo-EMF, magnetoresistance, and magnetization to magnetic impurity states in manganites Nd(1–x)SrxMnO3 and Sm(1–x) SrxMnO3, Technical Physics, 2018, vol. 88, issue 2, pp. 228-233. DOI: 10.1134/S1063784218020202.
7. Salazar D., Arias D., Dura O.J. et al. Thermopower and electrical resistivity of La1−xSrxMnO3 (x = 0.2, 0.3): effect of nanostructure on small polaron transport, Journal of Alloys and Compounds, 2014, vol. 583, pp. 141-144. DOI: https://doi.org/10.1016/j.jallcom.2013.08.106.
8. Mandal P. Temperature and doping dependence of the thermopower in LaMnO3, Physical Review B, 2000, vol. 61, issue 21, pp. 14675-14680. DOI: 10.1103/PhysRevB.61.14675.
9. Kozhevnikov V.L., Leonidov I.A., Mitberg E.B et al. High-temperature thermopower and conductivity of La1-xBaxMnO3 (0.02≤x≤0.35), Journal of Solid State Chemistry, 2003, vol. 172, issue 1, pp. 1-5. DOI: 10.1016/S0022-4596(03)00050-1.
10. Kabirov Yu.V., Belokobylsky M.V., Popov V.R. et al. Termoelectric properties of CuO-LiCoO2-La0.7Sr0.3MnO3, Letters on Materials, 2023, vol. 1, no. 2, pp. 153-157. DOI: 10.22226/2410-3535-2023-2-153-157.
11. Vasiliev A.V., Eliseev A.A., Anokhin E.O., Trusov L.A. Otsenka tunnel'nogo magnitosoprotivleniya v kompozitakh manganit - PMMA [The evaluation of the tunneling magnetoresistance manganite - PMMA composites], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2013, issue 5, pp. 39-45. (In Russian).
12. Wu B.W., Luo G.Y., Lin J.G., Huang S.Y. Longitudinal spin Seebeck effect in a half-metallic La0.7Sr0.3MnO3 film, Physical Review B, 2017, vol. 96, issue 6, pp 060402-1-060402-6. DOI: 10.1103/PhysRevB.96.060402.
13. Uchida K., Takahashi S., Harii K. et al. Observation of the spin Seebeck effect, Nature, 2008, vol. 455, pp. 778-781. DOI: 10.1038/nature07321.
14. Saitoh E., Ueda M., Miyajima H., Tatara G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect, Applied Physics Letters, 2006, vol. 88, issue 18, pp. 182509-1-182509-3. DOI: 10.1063/1.2199473.
15. Ritzmann U., Hinzke D., Kehlberger A. et al. Magnetic field control of the spin Seebeck effect, Physical Review B, 2015, vol. 92, issue 17, pp. 174411-1-174411-5. DOI: 10.1103/PhysRevB.92.174411.
16. Samoshkina Y.E., Rautskii M.V., Stepanovaet E.A. al. Determination of the existence region of a Griffith-like phase in Pr1–xSrxMnO3/YSZ films, Journal of Experimental and Theoretical Physics, 2017, vol. 125, issue 6, pp. 1090-1095. DOI: 10.1134/S106377611712007X.