Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


X-ray diffraction studies of the growth process of thin films of high-entropy TiNbZrTaHfCu alloy in situ using synchrotron radiation

Yu.F. Ivanov1, Yu.Kh. Akhmadeev1, A.A. Klopotov2, N.A. Prokopenko1, E.A. Petrikova1, O.V. Krysina1, V.V. Shugurov1, A.N. Shmakov3, V.Yu. Lavrov2

1 Institute of High- Current Electronics of the Siberian Branch of the RAS
2 Tomsk State University of Architecture and Building
3 Boreskov Institute of Catalysis of the Siberian Branch of the RAS

DOI: 10.26456/pcascnn/2024.16.140

Original article

Abstract: High-entropy alloys based on refractory metals, possessing an unusual combination of physical, mechanical, tribological, electrophysical, etc. properties, can be recommended for use in various fields of industry and medicine. The aim of the work is to study the growth process of high-entropy alloys films of the Ti-Nb-Zr-Ta-Hf-Cu system in real time by X-ray phase analysis using synchrotron radiation. Experiments on the deposition of multielement metal films were carried out on the VEIPS-1 setup developed at the Institute of high current electronics Siberian branch of the Russian academy of sciences for studying the processes of the film and coating formation on a synchrotron radiation source. The process of in situ thin film structure formation with high time resolution was studied using a synchrotron radiation source – the VEPP-3 electron storage ring, the Institute of nuclear physics, Siberian branch of the Russian academy of sciences. It is shown that the deposition of Ti-Nb-Zr-Ta-Hf-Cu plasma on a HG40 substrate is accompanied by the formation of an amorphous-crystalline state represented by phases of the composition (presumably) Ti-Nb-Zr-Ta-Hf-Cu, TiZr, NbZr, and CuTiZr, formed at different stages of film deposition. The main phase is the Ti-Nb-Zr-Ta-Hf-Cu composition.

Keywords: high-entropy alloy, refractory metals, synchrotron radiation, phase composition, copper alloying

  • Yuri F. Ivanov – Dr. Sc., Chief Researcher, Laboratory of Plasma Emission Electronics, Institute of High- Current Electronics of the Siberian Branch of the RAS
  • Yuri Kh. Akhmadeev – Ph. D., Head of the Laboratory of Plasma Emission Electronics, Institute of High- Current Electronics of the Siberian Branch of the RAS
  • Anatoly A. Klopotov – Dr. Sc., Professor, Department of Applied Mechanics and Materials Science, Tomsk State University of Architecture and Building
  • Nikita A. Prokopenko – Junior Researcher, Laboratory of Plasma Emission Electronics, Institute of High- Current Electronics of the Siberian Branch of the RAS
  • Elizaveta A. Petrikova – Junior Researcher, Laboratory of Plasma Emission Electronics, Institute of High- Current Electronics of the Siberian Branch of the RAS
  • Olga V. Krysina – Ph. D., Researcher, Laboratory of Plasma Emission Electronics, Institute of High- Current Electronics of the Siberian Branch of the RAS
  • Vladimir V. Shugurov – Researcher, Laboratory of Plasma Emission Electronics, Institute of High- Current Electronics of the Siberian Branch of the RAS
  • Alexander N. Shmakov – Dr. Sc., Chief Researcher, Boreskov Institute of Catalysis of the Siberian Branch of the RAS
  • Valentin Yu. Lavrov – 2nd year graduate student, Department of Applied Mechanics and Materials Science, Tomsk State University of Architecture and Building

Reference:

Ivanov, Yu.F. X-ray diffraction studies of the growth process of thin films of high-entropy TiNbZrTaHfCu alloy in situ using synchrotron radiation / Yu.F. Ivanov, Yu.Kh. Akhmadeev, A.A. Klopotov, N.A. Prokopenko, E.A. Petrikova, O.V. Krysina, V.V. Shugurov, A.N. Shmakov, V.Yu. Lavrov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 140-153. DOI: 10.26456/pcascnn/2024.16.140. (In Russian).

Full article (in Russian): download PDF file

References:

1. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 2004, vol. 375-377, pp. 213-218. DOI: 10.1016/j.msea.2003.10.257.
2. Yeh J.-W., Chen S.-K., Lin S.-J. et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials, 2004, vol. 6, issue 5, pp. 299-303. DOI: 10.1002/adem.200300567.
3. Senkov O.N., Miracle D.B., Chaput K.J., Couzinie J.-P. Development and exploration of refractory high entropy alloys – a review, Journal of Materials Research, 2018, vol. 33, issue 19, pp. 3092-3128. DOI: 10.1557/jmr.2018.153.
4. Senkov O.N., Wilks G.B., Miracle D.B. et al. Refractory high-entropy alloys, Intermetallics, 2010, vol. 18, issue 9, pp. 1758-1765. DOI: 10.1016/j.intermet.2010.05.014.
5. Schuh B. Thermodynamic stability and mechanical properties of nanocrystalline high-entropy alloys, Doctoral Thesis. Leoben, Erich Schmid Institute of Materials Science, 2018, XII+126 p.
6. Senkov O.N., Scott J.M., Senkova S.V. et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, Journal of Materials Science, 2012, vol. 47, issue 9, pp. 4062-4074. DOI: 10.1007/s10853-012-6260-2.
7. Senkov O.N., Scott J.M., Senkova S.V. et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds, 2011, vol. 509, issue 20, pp. 6043-6048. DOI: 10.1016/j.jallcom.2011.02.171.
8. Coury F.G., Kaufman M., Clarke A.J. Solid-solution strengthening in refractory high entropy alloys, Acta Materialia, 2019, vol. 175, pp. 66-81. DOI: 10.1016/j.actamat.2019.06.006.
9. Jayaraj J., Thinaharan C., Ningshen S. et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium, Intermetallics, 2017, vol. 89, pp. 123-132. DOI: 10.1016/j.intermet.2017.06.002.
10. Manea C.A., Sohaciu M., Stefănoiu R. et al. New HfNbTaTiZr high-entropy alloy coatings produced by electrospark deposition with high corrosion resistance, Materials, 2021, vol. 14, issue 15, art. no. 4333, 10 p. DOI: 10.3390/ma14154333.
11. Cheng Z., Sun J., Gao X. et al. Irradiation effects in high-entropy alloys and their applications, Journal of Alloys and Compounds, 2023. vol. 930, art. 166768, 71 p. DOI: 10.1016/j.jallcom.2022.166768.
12. Slobodyan M., Pesterev E., Markov A. Recent advances and outstanding challenges for implementation of high entropy alloys as structural materials. Materials Today Communications, 2023, vol. 36, art. no. 106422, 82 p. DOI: 10.1016/j.mtcomm.2023.106422.
13. Koželj P., Vrtniĉ S., Djelen A. et al. Discovery of a superconducting high-entropy alloy, Physical Review Letters, 2014, vol. 113, issue 10, pp. 107001-1-107001-5. DOI: 10.1103/PhysRevLett.113.107001.
14. Zýka J., Málek J., Pala Z. et al. Structure and mechanical properties of TaNbHfZrTi high entropy alloy, 24th International Conference on Metallurgy and Materials (Metal 2015), June 3-5, 2015, Brno, Czech Republic, conference paper. Ostrava, TANGER Ltd., 2015, pp. 1687-1692.
15. Eisenbarth E., Velten D., Müller M. et al. Biocompatibility of stabilizing elements of titanium alloys, Biomaterials, 2004, vol. 25, issue 26, pp. 5705-5713. DOI: 10.1016/j.biomaterials.2004.01.021.
16. Grandin H.M., Berner S., Dard M. A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants, Materials, 2012, vol. 5, issue 8, pp. 1348-1360. DOI: 10.3390/ma5081348.
17. Biesiekierski A., Wang J., Gepreel M.A.-H., Wen C. A new look at biomedical Ti-based shape memory alloys, Acta Biomaterialia, 2012, vol. 8, issue 5, pp. 1661-1669. DOI: 10.1016/j.actbio.2012.01.018.
18. Alven S., Buyana B., Feketshane Z., Aderibigbe B.A. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials, Pharmaceutics, 2021, vol. 13, issue 7, art. no. 964, 18 p. DOI: 10.3390/pharmaceutics13070964.
19. Lee D., Lee S.J., Moon J.-H. et al. Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications, Journal of Industrial and Engineering Chemistry, 2018, vol. 66, pp. 196-202. DOI: 10.1016/j.jiec.2018.05.030.
20. Canales D.A., Piñones N., Saavedra M. et al. Fabrication and assessment of bifunctional electrospun poly(l-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering, International Journal of Biological Macromolecules, 2023, vol. 228, pp. 78-88. DOI: 10.1016/j.ijbiomac.2022.12.195.
21. Khan A. ur R., Huang K., Jinzhong Z. et al. Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles, Journal of Materials Chemistry B, 2021, vol. 9, issue 5, pp. 1452-1465. DOI: 10.1039/D0TB02822C.
22. Al-Saeedi S.I., Al-Kadhi N.S., Al-Senani G.M. et al. Antibacterial potency, cell viability and morphological implications of copper oxide nanoparticles encapsulated into cellulose acetate nanofibrous scaffolds, International Journal of Biological Macromolecules, 2021, vol. 182, pp. 464-471. DOI: 10.1016/j.ijbiomac.2021.04.013.
23. Hashmi M., Ullah S., Kim I.S. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications, Current Research in Biotechnology, 2019, vol. 1, pp. 1-10. DOI: 10.1016/j.crbiot.2019.07.001.
24. Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials, Biotechnology Advances, 2009, vol. 27, issue 1, pp. 76-83. DOI: 10.1016/j.biotechadv.2008.09.002.
25. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future, International Journal of Nanomedicine, 2017. vol. 12, pp. 1227-1249. DOI: 10.2147/IJN.S121956.
26. Lenis J.A., Rico P., Ribelles J.L.G. et al Structure, morphology, adhesion and in vitro biological evaluation of antibacterial multi-layer HA−Ag−SiO2−TiN−Ti coatings obtained by RF magnetron sputtering for biomedical applications, Materials Science and Engineering C, 2020, vol. 116, art. no. 111268, 50 p. DOI: 10.1016/j.msec.2020.111268.
27. He X., Zhang G., Wang X. et al. Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium, Ceramics International, 2017, vol. 43, issue 18, рр. 16185-16195. DOI: 10.1016/j.ceramint.2017.08.196.
28. Heidenau F., Mittelmeier W., Detsch R. et al. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization, Journal of Materials Science: Materials in Medicine, 2005, vol. 16, issue 10, pp. 883-888. DOI: 10.1007/s10856-005-4422-3.
29. Ivanov Yu.F., Akhmadeev Yu.H., Prokopenko N.A. et al. Structure and properties of a HfNbTaTiZr cathode and a coating formed through its vacuum arc evaporation, Bulletin of the Russian Academy of Sciences: Physics, 2023, vol. 87, issue 2 supplement, pp. S250-S256. DOI: 10.1134/S1062873823704701.
30. Ivanov Y.F., Abzaev Yu.A., Klopotov A.A. et.al. Osobennosti strukturno-fazovogo sostoyaniya plenki na osnove vysokoentropijnogo splava AlNbTiZiCu, sintezirovannoj putem osazhdeniya mnogoelementnoj metallicheskoj plazmy [Features of the structural phase state of a film based on a high-entropy AlNbTiZrСu alloy synthesized by deposition of a multi-element metal plasma], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp.693-707. DOI: 10.26456/pcascnn/2021.13.693. (In Russian).
31. Binary alloy phase diagrams, ed. by T.B. Massalski, 2 volumes. Ohio, ASM International, Materials Park, 1986, XIII+2224 p.
32. Khegai I.K., Budberg P.B. Examination of the Ti–Zr–Nb system, Russian Metallurgy (Metally), 1971, no. 1, pp. 141-144.
33. Arroyave R., Eagar T.W., Kaufman L. Thermodynamic assessment of the Cu–Ti–Zr system, Journal of Alloys and Compounds, 2003, vol. 351, issue 1-2, pp. 158-170. DOI: 10.1016/S0925-8388(02)01035-6.
34. Grigorovich V.K. Periodicheskij zakon Mendeleeva i elektronnoe stroenie metallov: K 100-letiyu so dnya otkrytiya periodicheskogo zakona [Mendeleev's Periodic Law and the Electronic Structure of Metals: On the 100th Anniversary of the Discovery of the Periodic Law], ed. by A.M. Samarin. Moscow, Nauka Publ., 1966, 287 p. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒