Gas sensitivity of WOx/WS2 nanocomposites at room temperature under ultraviolet irradiation
Z.V. Shomakhov1, S.S. Nalimova2, O.D. Zyryanova2, V.M. Kondratev3,4, Z.Kh. Kalazhokov1, C.D. Bui2, V.A. Moshnikov2
1 Kabardino-Balkarian State University named after H.M. Berbekov
2 Saint Petersburg Electrotechnical University «LETI»
3 Moscow Institute of Physics and Technology
4 Alferov University
DOI: 10.26456/pcascnn/2024.16.1060
Original article
Abstract: Currently, semiconductor gas sensors are of interest for various applications, including industry, medicine and environmental monitoring. One of the most important tasks in the sensor technology is to reduce the operating temperature of devices. In this paper, it is proposed to use WOx/WS2 nanostructures obtained by a hydrothermal method to solve this problem. The morphology, structure, and composition of the developed nanostructures were studied using scanning electron microscopy, reflected electron diffraction and X-ray photoelectron spectroscopy. It is shown that the nanostructures are formed by 1D and 2D nanoobjects with an average length of 200 nm and are nanocomposites consisting of tungsten oxide WOx and tungsten disulfide WS2. The study of sensory properties when exposed to isopropanol, ethanol and acetone vapors at room temperature was carried out. A reversible change in resistance is demonstrated when these gases appear in the atmosphere. Additionally, exposure to ultraviolet radiation during the measurement process leads to an increase in the response value and speed of the sensor layers in the case of interaction with isopropanol and ethanol vapors.
Keywords: gas sensors, room temperature, nanostructures, tungsten oxide, tungsten disulfide, nanocomposites
- Zamir V. Shomakhov – Ph. D., Director of the Institute of artificial intelligence and digital technologies, Kabardino-Balkarian State University named after H.M. Berbekov
- Svetlana S. Nalimova – Ph. D., Docent, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Oksana D. Zyryanova – 4th year student, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Valeriy M. Kondratev – Junior Researcher, Laboratory of Functional Nanomaterials, Moscow Institute of Physics and Technology, Junior Researcher, Laboratory of Optics of Heterogeneous Structures and Optical Materials Alferov University
- Zamir Kh. Kalazhokov – Ph. D., Docent, Department of Nanosystems Physics, Kabardino-Balkarian State University named after H.M. Berbekov
- Cong D. Bui – 2nd year postgraduate student, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
- Vyacheslav A. Moshnikov – Dr. Sc., Professor, Micro- and Nanoelectronics Department, Saint Petersburg Electrotechnical University «LETI»
Reference:
Shomakhov, Z.V. Gas sensitivity of WOx/WS2 nanocomposites at room temperature under ultraviolet irradiation / Z.V. Shomakhov, S.S. Nalimova, O.D. Zyryanova, V.M. Kondratev, Z.Kh. Kalazhokov, C.D. Bui, V.A. Moshnikov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 1060-1070. DOI: 10.26456/pcascnn/2024.16.1060. (In Russian).
Full article (in Russian): download PDF file
References:
1. Dincer C., Bruch R., Costa-Rama E. et al. Disposable sensors in diagnostics, food, and environmental monitoring, Advanced
Materials, 2019, vol. 31, issue 30, art. no. 1806739, 28 p. DOI: 10.1002/adma.201806739.
2. Banga I., Paul A., Poudyal D.C. et al. Recent advances in gas detection methodologies with a special focus on environmental sensing and health monitoring applications – a critical review, ACS Sensors, 2023, vol. 8, issue 9, pp. 3307-3319. DOI: 10.1021/acssensors.3c00959.
3. Choi M.S., Kim M.Y., Mirzaei A. et al. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets, Applied Surface Science, 2021, vol. 568, art. no. 150910, 14 p. DOI: 10.1016/j.apsusc.2021.150910.
4 Li Y., Chen N., Deng D. et al. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity, Sensors and Actuators B: Chemical, 2017, vol. 238, pp. 264–273. DOI: 10.1016/j.snb.2016.07.051.
5. Zhang C., Luo Y., Xu J., Debliquy M. Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection, Sensors and Actuators A: Physical, 2019, vol. 289, pp. 118-133. DOI: 10.1016/j.sna.2019.02.027.
6. Singh A., Sikarwar S., Verma A., Chandra Yadav B. The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: A review, Sensors and Actuators A: Physical, 2021, vol. 332, art. no. 113127, 22 p. DOI: 10.1016/j.sna.2021.113127.
7. Mirzaei A., Ansari H.R., Shahbaz M. et al. Metal oxide semiconductor nanostructure gas sensors with different morphologies, Chemosensors, 2022, vol. 10, issue 7, art. no. 289, 23 p. DOI: 10.3390/chemosensors10070289.
8. Moon Y.K., Jeong S.-Y., Kang Y.C., Lee J.-H. Metal oxide gas sensors with Au nanocluster catalytic overlayer: toward tuning gas selectivity and response using a novel bilayer sensor design, ACS Applied Materials & Interfaces, 2019, vol. 11, issue 35, pp. 32169-32177. DOI: 10.1021/acsami.9b11079.
9. Nalimova S.S., Shomakhov Z.V., Gerasimova K.V. et al. Gazochuvstvitel'nye kompozitnye nanostruktury na osnove oksida tsinka dlya detektirovaniya parov organicheskikh rastvoritelej [Gas-sensitive composite nanostructures based on zinc oxide for detecting organic solvent vapors], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 678–687. DOI: 10.26456/pcascnn/2022.14.678. (In Russian).
10. Nalimova S.S., Moshnikov V.A., Shomakhov Z.V., Kondratev V.M. Gazovye sensory na osnove nanostruktur dvojnykh i trojnykh oksidnykh sistem [Gas sensors based on nanostructures of binary and ternary oxide systems], Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika [Journal of the Russian Universities. Radioelectronics], 2024, vol. 27, no. 2, pp. 105-118. DOI: 10.32603/1993-8985-2024-27-2-105-118. (In Russian).
11. Korotcenkov G., Cho B.K. Metal oxide composites in conductometric gas sensors: Achievements and challenges, Sensors and Actuators B: Chemical, 2017, vol. 244, pp. 182-210. DOI: 10.1016/j.snb.2016.12.117.
12. Xia Y., Xu L., He S. et al. UV-activated WS2/SnO2 2D/0D heterostructures for fast and reversible NO2 gas sensing at room temperature, Sensors and Actuators B: Chemical, 2022, vol. 364, art. no. 131903, 9 p. DOI: 10.1016/j.snb.2022.131903.
13. Zhou Y., Gao C., Guo Y. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet–ZnO nanowire heterojunctions at room temperature, Journal of Materials Chemistry A, 2018, vol. 6, issue 22, pp. 10286-10296. DOI: 10.1039/C8TA02679C.
14. Ryabko A.A., Nalimova S.S., Mazing D.S. et al. Sensitization of ZnO nanorods by AgInS2 colloidal quantum dots for adsorption gas sensors with light activation, Technical Physics, 2022, vol. 92, issue 6, pp. 717-722. DOI: 10.21883/TP.2022.06.54418.15-22.
15. Dong C., Zhao R., Yao L. et al. A review on WO3 based gas sensors: Morphology control and enhanced sensing properties, Journal of Alloys and Compounds, 2020, vol. 820, art. no. 153194, 24 p. DOI: 10.1016/j.jallcom.2019.153194.
16. Luo H., Shi J., Liu C. et al. Design of p-p heterojunctions based on CuO decorated WS2 nanosheets for sensitive NH3 gas sensing at room temperature, Nanotechnology, 2021, vol. 32, no. 44, art. no. 445502, 12 p. DOI: 10.1088/1361-6528/ac1800.
17. Kumar R.R., Murugesan T., Dash A. et al. Ultrasensitive and light-activated NO2 gas sensor based on networked MoS2/ZnO nanohybrid with adsorption/desorption kinetics study, Applied Surface Science, 2021, vol. 536, art. no. 147933, 10 p. DOI: 10.1016/j.apsusc.2020.147933.
18. Doan B.C., Nalimova S.S., Morozova N.A., Zyryanova O.D. Transition metal dichalcogenide hierarchical nanomaterials for chemiresistive-type gas sensors, 2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon), 29-31 January 2024, Saint Petersburg, Russian Federation. Saint Petersburg, IEEE Publ., 2024, pp. 536-539. DOI: 10.1109/ElCon61730.2024.10468493.
19. Kim J.-H., Kim J.-Y., Mirzaei A. et al. Synergistic effects of SnO2 and Au nanoparticles decorated on WS2 nanosheets for flexible, room-temperature CO gas sensing, Sensors and Actuators B: Chemical, 2021, vol. 332, art. no. 129493, 12 p. DOI: 10.1016/j.snb.2021.129493.
20. Sun L., Xu H., Cheng Z. et al. A heterostructured WS2/WSe2 catalyst by heterojunction engineering towards boosting hydrogen evolution reaction, Chemical Engineering Journal, 2022, vol. 443, art. no. 136348, 7 p. DOI: 10.1016/j.cej.2022.136348.
21. Yan M., Li G., Guo C. et al. WO3-x sensitized TiO2 spheres with full-spectrum-driven photocatalytic activities from UV to near infrared, Nanoscale, 2016, vol. 8, issue 41, pp. 17828-17835. DOI: 10.1039/c6nr06767k.
22. Schutte W.J., de Boer J.L., Jellinek F. Crystal structures of tungsten disulfide and diselenide, Journal of Solid State Chemistry, 1987, vol. 70, issue 2, pp. 207-209. DOI: 10.1016/0022-4596(87)90057-0.
23. Gutiérrez H.R., Perea-López N., Elías A.L. et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers, Nano Letters, 2013, vol. 13, issue 8, pp. 3447-3454. DOI: 10.1021/nl3026357.
24. Ryabko A.A., Bobkov А. A., Nalimova S.S. et al. Gas sensitivity of nanostructured coatings based on zinc oxide nanorods under combined activation, Technical Physics, 2022, vol. 92, issue 5, pp. 644-649. DOI: 10.21883/TP.2022.05.53683.314-21.