Development of a material based on hydroxyapatite and aluminosilicate zeolites with a binding agent for the formation of bioactive coatings
V.M. Skachkov1, E.A. Bogdanova1,2, S.A. Bibanaeva1, A.G. Shirokova1
1 Institute of Solid State Chemistry of the Ural Branch of RAS
2 JSC Giredmet
DOI: 10.26456/pcascnn/2024.16.1004
Original article
Abstract: The hardened composite material with a porous structure was obtained by mechanochemical synthesis of nanostructured hydroxyapatite synthesized by precipitation from an aqueous solution with reinforcing additives of zirconium dioxide and silicic acid. Food gelatin is used as a binder. The influence of the phase composition on physico-chemical properties of coatings (adhesive strength, microhardness, specific surface area, microstructure) is estimated. It has been established that the use of composite material together with gelatin as a part of a bioactive coating makes it possible to increase its hardness and adhesive strength. A patent application has been filed for the developed bioactive coatings based on nanoscale hydroxyapatite and biogenic elements with a binding agent. The composition of the dry mixture based on hydroxyapatite has been developed, which ensures a long shelf life without negative consequences and creates simple transportation conditions. Dilution of the dry mixture with distilled water gives a suspension that is convenient to use for coating implants of any configuration.
Keywords: hydroxyapatite, composite materials, aluminosilicate zeolites, gelatin, collagen, biomaterial, bioactive coatings, adhesion
- Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes, Institute of Solid State Chemistry of the Ural Branch of RAS
- Ekaterina A. Bogdanova – Ph. D., Senior Researcher, Laboratory of heterogeneous processes chemistry, Institute of Solid State Chemistry of the Ural Branch of RAS, Leading Researcher, Laboratory of electrochemical devices for hydrogen energy JSC Giredmet
- Svetlana A. Bibanaeva – Researcher, Laboratory of Heterogeneous Processes, Institute of Solid State Chemistry of the Ural Branch of RAS
- Alla G. Shirokova – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes, Institute of Solid State Chemistry of the Ural Branch of RAS
Reference:
Skachkov, V.M. Development of a material based on hydroxyapatite and aluminosilicate zeolites with a binding agent for the formation of bioactive coatings / V.M. Skachkov, E.A. Bogdanova, S.A. Bibanaeva, A.G. Shirokova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 1004-1015. DOI: 10.26456/pcascnn/2024.16.1004. (In Russian).
Full article (in Russian): download PDF file
References:
1. Sadeghzade S., Liu J., Wang H. et al. Recent advances on bioactive baghdadite ceramic for bone tissue engineering applications: 20 years of research and innovation (a review), Materials Today Bio, 2022, vol. 17, art. no. 100473, 27 p. DOI: 10.1016/j.mtbio.2022.100473.
2. Zhao R., Shang T., Yuan B. et al. Osteoporotic bone recovery by a bamboo-structured bioceramic with controlled release of hydroxyapatite nanoparticles, Bioactive Materials, 2022, vol. 17, pp. 379-393. DOI: 10.1016/j.bioactmat.2022.01.007.
3. Bogdanova E.A., Skachkov V.М., Giniyatullin I.M., Pereverzev D.I., Nefedova K.V. Poluchenie biokomozitov na osnove nanorazmernogo gidroksiapatita s soedineniyami titana [Preparation of biocomposites based on nanoscale hydroxyapatite with titanium compounds], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 655-663. DOI: 10.26456/pcascnn/2021.13.655. (In Russian).
4. Bogdanova E.A., Skachkov, Nefedova K.V. Poluchenie biokomozitov na osnove nanorazmernogo gidroksiapatita s soedineniyami titana [Preparation of biocomposites based on nanoscale hydroxyapatite with titanium compounds], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 521-530. DOI: 10.26456/pcascnn/2022.14.521. (In Russian).
5. Giniyatullin I.M., Bogdanova E.A., Nefedova K.V. Razrabotka kompozitsionnykh materialov na osnove nanorazmernogo gidroksiapatita, uprochnennogo oksidami alyuminiya i tsirkoniya [Development of composite materials based on nanoscale hydroxyapatite reinforced with aluminum and zirconium oxides], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 571-579. DOI: 10.26456/pcascnn/2020.12.571. (In Russian).
6. Pereverzev D.I., Bogdanova E.A., Nefedova K.V. Poluchenie biokompozitov na osnove nanorazmernogo gidroksiapatita, dopirovannogo oksidom cirkoniya i ftoridom kal'ciya [Creating biocomposites based on nano-sized hydroxyapatite doped with zirconium oxide and calcium fluoride], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 697-705. DOI: 10.26456/pcascnn/2020.12.697. (In Russian).
7. Bogdanova E.A., Giniyatullin I.М., Pereverzev D.I., Razgulyaeva V.М. Vliyanie armiruyushchikh dobavok na protsessy spekaniya i uprochneniya nanorazmernogo gidroksiapatita [Influence of reinforcement additives on sintering and hardening processes of nanoscale hydroxyapatite], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 548-554. DOI: 10.26456/pcascnn/2019.11.548. (In Russian).
8. Panda S., Biswas C.K., Paul S. A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering, Chemistry of Materials, 2021, vol. 47, issue 20, pp. 28122-28144. DOI: 10.1016/j.ceramint.2021.07.100.
9. Borcherding K., Schmidmaier G., Hofmann G.O., Wildemann B. The rationale behind implant coatings to promote osteointegration, bone healing or regeneration, Injury, 2021, vol. 52, suppl. 2, p. S106-S111. DOI: 10.1016/j.injury.2020.11.050.
10. Chen K., Zhao Y., Zhang Y. et al. Fretting stimulation enhances bone growth at the interface between hydroxyapatite coating and bone, Colloids and Surfaces B: Biointerfaces, 2022, vol. 217, art. no. 112669, 10 p. DOI: 10.1016/j.colsurfb.2022.112669.
11. Qiu X., Wan P., Tan L., Fan X., Yang K. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition, Materials Science and Engineering: C, 2014, vol. 36, pp. 65-76. DOI: 10.1016/j.msec.2013.11.041.
12. Mamaeva A.A., Kenzhegulov A.K., Panichkin A.V. A study of the influence of thermal treatment on hydroxyapatite coating, Protection of Metals and Physical Chemistry of Surfaces, 2018, vol. 54, issue 3, pp. 448-452. DOI: 10.1134/S2070205118030115.
13. Dobrovol'skaya I.P., Tsarev N.S., Ivan'kova E.M. et al. Effect of thermal treatment on the structure and properties of hydroxyapatite, Russian Journal of Applied Chemistry, 2018, vol. 91, issue 3, pp. 368-374. DOI: 10.1134/S1070427218030035.
14. Jin H.H., Lee C.H., Lee W.K. et al. In-situ formation of the hydroxyapatite/chitosan-alginate composite scaffolds, Materials Letters, 2008, vol. 62, issue 10-11, pp. 1630-1633. DOI: 10.1016/j.matlet.2007.09.043.
15. Neumann M., Epple M. Composites of calcium phosphate and polymers as bone substitution materials, European Journal of Trauma, 2006, vol. 32, issue 2, pp. 125-131. DOI: 10.1007/s00068-006-6044-y.
16. Vlierberghe S.V., Dubruel P., Schacht E Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review, Biomacromolecules, 2011, vol. 12, issue 5, pp. 1387-1408. DOI: 10.1021/bm200083n.
17. Sarker A., Linh N.T.B., Jung H. Il, Seo H.S., Lee B.T. Fabrication of recombinant human bone morphogenetic protein-2 coated porous biphasic calcium phosphate-sodium carboxymethylcellulose-gelatin scaffold and its In vitro evaluation, Macromolecular Research, 2014, vol. 22, issue12, pp. 1297-1305. DOI: 10.1007/s13233-014-2185-8.
18. Tsuruga E., Takita H., Itoh H., Wakisaka Y., Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis, The Journal of Biochemistry, 1997, vol. 121, issue 2, pp. 317-324. DOI: 10.1093/oxfordjournals.jbchem.a021589.
19. Eggli P.S., Moller W., Schenk R.K. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: a comparative histomorphometric and histologic study of bony ingrowth and implant substitution, Clinical Orthopaedics and Related Research, 1988, vol. 232, pp. 127-138. DOI: 10.1097/00003086-198807000-00017.
20. Daculsi G., Passuti N. Effect of the macroporosity for osseous substitution of calcium phosphate ceramics, Biomaterials, 1990, vol. 11, pp. 86-87.
21. Lu J.X., Flautre B., Anselme K., Hardouin P. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo, Journal of Materials Science: Materials in Medicine, 1999, vol. 10, issue 2, pp. 111-120. DOI: 10.1023/A:1008973120918.
22. Bogdanova E.A., Skachkov V.М., Medyankina I.S. et al. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution, SN Applied Sciences, 2020, vol. 2, issue 9, art. no. 1565, 7 p. DOI: 10.1007/s42452-020-03388-5.
23. Sabirzyanov N.A., Bogdanova E.A., Khonina T.G. Sposob polucheniya suspenzii gidroksiapatita [A method of obtaining a suspension of hydroxyapatite]. Patent RF, no. 2406693, 2010. (In Russian).
24. Sabirzyanov N.A., Bogdanova E.A., Skachkov V.M. Sposob polucheniya suspenzii apatita [Method of preparing apatite suspension]. Patent RF, no. 2652193, 2018. (In Russian).
25. Bibanaeva S.A. Sintez alyumosilikatnykh tseolitov v usloviyakh glinozemnogo proizvodstva [Synthesis of aluminosilicate zeolites in the conditions of alumina production], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 747-753. DOI: 10.26456/pcascnn/2022.14.747. (In Russian).
26. Bibanaeva S.A., Skachkov V.M. Sposob polucheniya sinteticheskogo tseolita [Method of producing synthetic zeolite]. Patent RF, no. 2787819, 2023. (In Russian).
27.Bibanaeva S.A., Bogdanova E.A., Skachkov V.M. Sintez i issledovanie funkcionalnykh kharakteristik kompozicionnykh materialov na osnove nanorazmernogo gidroksiapatita i sinteticheskikh tseolitov [Synthesis and investigation of functional characteritics of composote materials based on nanoscale hydroxyapatite and synthetic zeolites], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 913-923. DOI: 10.26456/pcascnn/2023.15.913. (In Russian).
28. Zhelatin. Tekhnicheskie usloviya: GOST 11293-89 [Gelatin. Specifications], State Standard RF, no. 11293-89. Moscow, IPK Standartov Publ., 1989, 24 p. (in Russian).