Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Analysis of domain structure parameters of RFe11Ti (R = Y, Gd, Ho, Er) single crystals based on magnetic force microscopy data

A.M. Guseva, A.I. Sinkevich, S.D. Smetannikova, E.M. Semenova, Yu.G. Pastushenkov

Tver State University

DOI: 10.26456/pcascnn/2024.16.085

Original article

Abstract: The results of an experimental study of the magnetic domain structure on the basal plane of RFe11Ti single crystals (R=Y, Gd, Ho, Er) by magnetic force microscopy are presented. At room temperature, the compounds are characterized by magnetocrystalline anisotropy of the «easy axis» type. Based on the magnetic force microscopy data, the sizes of domains on the basal plane of the samples were determined. Using the Bodenberger-Hubert method, the surface energy density of domain walls γ was determined for all compounds based on the magnetic force microscopy data: YFe11Ti – 4,05 mJ/m2, GdFe11Ti – 5,93 mJ/m2, HoFe11Ti – 4,97 mJ/m2, ErFe11Ti – 2,98 mJ/m2. The cube counting method was used to calculate the fractal dimension DL of the stray fields of the domain structure at different heights from the surface (0,1 – 9 μm). DL on the surface of the z(0) sections has values of 2,62 for compounds with R = Y, Gd, Ho and 2,72 for R=Er. For all samples, DL has a maximum near the surface.

Keywords: rare earth intermetallic compounds, domain structure, magnetic force microscopy, fractal dimension

  • Anna M. Guseva – 4th year student, Faculty of Physics and Technology, Tver State University
  • Artem I. Sinkevich – senior lecturer, Condensed Matter Physic Department, Tver State University
  • Sofia D. Smetannikova – 2nd year student, Faculty of Physics and Technology, Tver State University
  • Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
  • Yuriy G. Pastushenkov – Professor, Condensed Matter Physics Department, Tver State University

Reference:

Guseva, A.M. Analysis of domain structure parameters of RFe11Ti (R = Y, Gd, Ho, Er) single crystals based on magnetic force microscopy data / A.M. Guseva, A.I. Sinkevich, S.D. Smetannikova, E.M. Semenova, Yu.G. Pastushenkov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 85-95. DOI: 10.26456/pcascnn/2024.16.085. (In Russian).

Full article (in Russian): download PDF file

References:

1. Hadjipanayis G.C., Gabay A.M., Schönhöbel A.M. et al. ThMn12-type alloys for permanent magnets, Engineering, 2020, vol. 6, issue 2, pp. 141-147. DOI: 10.1016/j.eng.2018.12.011.
2. Ener S., Skokov K.P., Palanisamy D. et al. Twins – a weak link in the magnetic hardening of ThMn12-type permanent magnets, Acta Materialia, 2021, vol. 214, art. no. 116968, 10 p. DOI: 10.1016/j.actamat.2021.116968.
3. De Mooij D.B., Buschow K.H.J. Some novel ternary ThMn12-type compounds, Journal of the Less Common Metals, 1988, vol. 136, issue 2, pp. 207-215. DOI: 10.1016/0022-5088(88)90424-9.
4. Gabay A.M., Hadjipanayis G.C. Recent developments in RFe12-type compounds for permanent magnets, Scripta Materialia, 2018, vol. 154, pp. 284-288. DOI: 10.1016/j.scriptamat.2017.10.033.
5. Bouhbou M., Moubah R., Hlil E.K., Lassri H., Bessais L. Electronic structure, hyperfine parameters and magnetic properties of RFe11Ti intermetallic compounds (R= Y, Pr): ab initio calculations, SQUID magnetometry and Mössbauer studies, Journal of Magnetism and Magnetic Materials, 2021, vol. 518, art. no. 167362, 10 p. DOI: 10.1016/j.jmmm.2020.167362.
6. Guslienko K.Y., Kou X.C., Grössinger R. Magnetic anisotropy and spin-reorientation transitions in RFe11Ti (R= Nd, Tb, Dy, Er) rare-earth intermetallics, Journal of Magnetism and Magnetic Materials, 1995, vol. 150, issue 3, pp. 383-392. DOI: 10.1016/0304-8853(95)00282-0.
7. Skokov K., Grushishev A., Khokholkov A. et al. Magnetic properties of Gd3FexTi3 (x= 34, 33,…, 24), TbFe11Ti and TbFe10Ti single crystals, Journal of Magnetism and Magnetic Materials, 2004, vol. 272, part 1, pp. 374-375. DOI: 10.1016/j.jmmm.2003.11.147.
8. Skokov K., Grushishev A., Khokholkov A. et al. Structural and magnetic properties of R3Fe29− xTix alloys and R3Fe33− xTi3 single crystals, R= Y, Gd, Tb, Dy, Ho, Er, Journal of Magnetism and Magnetic Materials, 2005, vol. 290-291, part 1, pp. 647-650. DOI: 10.1016/j.jmmm.2004.11.322.
9. Semenova E., Lyakhova M., Karpenkov D. et al. Stress-induced magnetic domain structure in DyFe11Ti compound, EPJ Web of Conferences. EDP Sciences, 2018, vol. 185 (Moscow International Symposium on Magnetism (MISM 2017)), art. no. 04027, 4 p. DOI: 10.1051/epjconf/201818504027.
10. Andreev A.V., Bartashevich M.I., Kudrevatykh N.V. et al. Magnetic and magnetoelastic properties of DyFe11Ti single crystals, Physica B: Condensed Matter, 1990, vol. 167, issue 2, pp. 139-144. DOI: 10.1016/0921-4526(90)90006-G.
11. Horcheni J., Jaballah H., Dhahri E., Bessais L. Exploring crystal structure, hyperfine parameters, and magnetocaloric effect in iron-rich intermetallic alloy with ThMn12-type structure: a comprehensive investigation using experimental and DFT calculation, Magnetochemistry, 2023, vol. 9, issue 11, art. no. 230, 16 p. DOI: 10.3390/magnetochemistry9110230.
12. Chen C., Huang Y.L., Yao Y.F. et al. Effects of thermal annealing on improved magnetic properties and microstructure for SmFe11Ti alloy, Journal of Magnetism and Magnetic Materials, 2021, vol. 530, art. no. 167950, 5 p. DOI: 10.1016/j.jmmm.2021.167950.
13. Bodenberger R., Hubert A. Zur bestimmung der blochwandenergie von einachsigen ferromagneten, Physica Status Solidi (a), 1977, vol. 44, issue 1, pp. K7-K11. DOI: 10.1002/pssa.2210440146.
14. Abadía C., Algarabel P.A., García-Landa B. et al. Study of the crystal electric field interaction in single crystals, Journal of Physics: Condensed Matter, 1998, vol. 10, no. 2, pp. 349-361. DOI: 10.1088/0953-8984/10/2/014.
15. Herper H., Skokov K.P., Ener S. et al. Magnetic properties of NdFe11Ti and YFe11Ti, from experiment and theory, Acta Materialia, 2023, vol. 242, art. no. 118473, 12 p. DOI: 10.1016/j.actamat.2022.118473.
16. Li H.S., Coey J.M.D. Magnetic properties of ternary rare-earth transition-metal compounds, Handbook of Magnetic Materials, Amsterdam, Elsevier, 2019, vol. 28, chapter 3, pp. 87-196. DOI: 10.1016/bs.hmm.2019.10.001.
17. Lisovskii F.V., Lukashenko L.I., Mansvetova E.G. Thermodynamically stable fractal-like domain structures in magnetic films, Journal of Experimental and Theoretical Physics Letters, 2004, vol.79, issue 7, pp. 352-354. DOI: 10.1134/1.1765181.
18. Han B.S., Li D., Zheng D.J., Zhou Y. Fractal study of magnetic domain patterns, Physical Review B, 2002, vol. 66, issue 1, pp. 014433-1-014433-5. DOI: 10.1103/PhysRevB.66.014433.
19. Semenova E.M., Lyakhova M.B., Kuznetsova Yu.V. et al. A comparative analysis of magnetic properties and microstructure of high coercivity Sm(Co,Cu,Fe)5 quasi-binary alloys in the framework of fractal geometry, Journal of Physics: Conference Series, 2020, vol. 1658, art. no. 012050, 6 p. DOI: 10.1088/1742-6596/1658/1/012050.
20. Semenova E.M., Ivanov D.V., Lyakhova M.B. et al. Fractal geometry of the nano- and magnetic domain structures of Sm-Co-Cu-Fe ferromagnetic alloy in a high coercive state, Bulletin of the Russian Academy of Sciences: Physics, 2021, vol. 85, issue 9, pp. 955-958. DOI: 10.3103/S1062873821090252.
21. Zigert A.D., Dunaeva G.G., Sdobnyakov N.Yu. Fraktal'nyj analiz labirintnoj domennoj struktury ferrit-granatovykh plenok v protsesse peremagnichivaniya [Fractal analysis of the maze-like domain structure of ferrite-garnet films in the process of magnetization], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 134-145. DOI: 10.26456/pcascnn/2021.13.134. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒