Comprehensive approach to studying fractal structures on iron surfaces
A.S. Antonov1, N.Yu. Sdobnyakov1, V.A. Anofriev1, M.S. Afanasiev2,3, E.M. Semenova1, V.V. Makaev1
1 Tver State University
2 MIREA – Russian Technological University
3 Fryazino Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics of RAS
DOI: 10.26456/pcascnn/2024.16.007
Original article
Abstract: Nanoscale iron films of different thicknesses and at different spatial scales were studied using two alternative methods: atomic force microscopy and scanning tunneling microscopy. It was revealed that the surface morphology and fractal dimension depend not only on the film thickness but also on the deposition conditions and subsequent digital processing. It was concluded that the surface has a highly developed relief, which corresponds to high values of the fractal dimension. A hypothesis was put forward that the presence of iron oxides on the surface of the studied samples significantly affects their morphology, contributing to the formation of a complex and highly developed relief. These oxides lead to the formation of some structural inhomogeneities, which lead to the observation of agglomerates in a fairly wide range of fractal dimension values (from 2,49 to 2,94) on the film surface, i.e. oxides contribute to the aggregation of particles, creating a more complex surface structure. In addition, a method of separating agglomerates allowed us to record an increase in the value of the fractal dimension, which indicates the efficiency of separating and studying individual complex surface objects. Thus, for nanosized iron films, it becomes important to take into account the effects of oxidation and agglomeration of surface elements when analyzing them and choosing a method for obtaining them to identify structures with a certain value of the fractal dimension.
Keywords: atomic force microscopy, scanning tunneling microscopy, magnetron sputtering, fractal dimension, iron films
- Alexander S. Antonov – Ph. D., Researcher, General Physics Department, Tver State University
- Nickolay Yu. Sdobnyakov – Dr. Sc., Docent, General Physics Department, Tver State University
- Vitaly A. Anofriev – 2nd year postgraduate student, General Physics Department, Tver State University
- Mikhail S. Afanasiev – Dr. Sc., Docent, Professor, MIREA – Russian Technological University, Leading Researcher Fryazino Branch of V.A. Kotelnikov Institute of Radio Engineering and Electronics of RAS
- Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
- Vladislav V. Makaev – 4th year student, General Physics Department, Tver State University
Reference:
Antonov, A.S. Comprehensive approach to studying fractal structures on iron surfaces / A.S. Antonov, N.Yu. Sdobnyakov, V.A. Anofriev, M.S. Afanasiev, E.M. Semenova, V.V. Makaev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2024. — I. 16. — P. 7-23. DOI: 10.26456/pcascnn/2024.16.007. (In Russian).
Full article (in Russian): download PDF file
References:
1. Persson B.N.J. On the fractal dimension of rough surfaces, Tribology Letters, 2014, vol. 54, issue 1, pp. 99-106. DOI: 10.1007/s11249-014-0313-4.
2. Sdobnyakov N.Yu., Antonov A.S., Ivanov D.V. Morfologicheskie kharakteristiki i fraktal'nyj analiz metallicheskikh plenok na dielektricheskikh poverkhnostyakh: monografiya [Morphological characteristics and fractal analysis of metal films on dielectric substrates: monography]. Tver: Tver State Unibersity Publ., 2019, 168 p. (In Russian).
3. Zhou W., Cao Y., Zhao H. et al. Fractal analysis on surface topography of thin films: a review, Fractal and fractional, 2022, vol. 6, issue 3, art. no. 135, 30 p. DOI: 10.3390/ fractalfract6030135.
4. Anofriev V.A., Nizenko A.V., Ivanov D.V., Antonov A.S., Sdobnyakov N.Yu. K probleme avtomatizatsii protsessa opredeleniya fraktal'noj razmernosti [To the problem of automation of the process of determination of the fractal dimension], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 264-276. DOI: 10.26456/pcascnn/2022.14.264. (In Russian).
5. Ivanov D.V., Antonov A.S., Semenova E.M., Ivanova A.I., Kuz'min N.B., Sdobnyakov N.Yu. O formirovanii fraktal'nykh plenok zheleza [On the formation of fractal iron films], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 108-119. DOI:10.26456/pcascnn/2022.14.108. (In Russian).
6. Filnov S.O., Estyunin D.A., Klimovskikh I.I. et al. Joint intercalation of ultrathin Fe and Co films under a graphene buffer layer on a SiC(0001) single crystal, Letters to Journal of Experimental and Theoretical Physics, 2023, vol. 117, issue 5, pp. 363-369. DOI: 10.1134/S0021364022603025.
7. Arnault J.C., Knoll A., Smigiel E., Cornet A. Roughness fractal approach of oxidised surfaces by AFM and diffuse X-ray reflectometry measurements, Applied Surface Science, 2001, vol. 171, issues 3-4, pp. 189-196. DOI: 10.1016/S0169-4332(00)00550-X.
8. Myagkov V.G., Zhigalov V.S., Zharkov S.M. Fractal oxidation of amorphous iron films, Doklady Physics, 1996, vol. 41, no. 2, pp. 55-58.
9. DigitalSurf. Available at: www.url: https://www.digitalsurf.com (accessed 01.04.2024).
10. Image Analysis P9. Rukovodstvo pol'zovatelya [Image Analysis P9. User guide]. Moscow, NT-MDT SI Publ., 2019, 582 p. (In Russian).
11. Sdobnyakov N.Yu., Anofriev V.A., Koshelev V.A., Antonov A.S., Ivanov D.V. FractalSurface: programma dlya analiza poverkhnosti na nanourovne [FractalSurface: software for surface analysis at nanoscale]. Certificate RF, no. 2021618928, 2021. (In Russian).
12. Sdobnyakov N.Yu., Anofriev V.A., Nizenko A.V., Antonov A.S., Ivanov D.V., Kuz’min N.B. FractalSurface 2.0: programma dlya analiza poverkhnosti na nanourovne [FractalSurface 2.0: software for surface analysis at nanoscale]. Certificate RF, no. 2023614856, 2023. (In Russian).
13. Anofriev V.A., Antonov A.S., Ivanov D.V. et al. Pattern formirovaniya fraktal'nogo rel'efa dlya nanorazmernykh plyonok molibdena [Formation pattern of fractal relief for nanosized molybdenum films], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2023, issue 15, pp. 17-31. DOI: 10.26456/pcascnn/2023.15.017. (In Russian).
14. Krim J., Heyvaert I., Van Haesendonck C., Bruynseraede Y. Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces, Physical Review Letters, 1993, vol.70, issue 1, pp. 57-60. DOI: 10.1103/PhysRevLett.70.57.
15. Ivanova N.A., Baklanov A.M., Onishchuk A.A. Obrazovaniye v gazovoy faze agregatov zheleza i uglerodnykh nanostruktur s vklyucheniyami zheleza [Formation in the gas phase of iron aggregates and carbonnanostructures with iron inclusions], Khimicheskaya fizika [Chemical Physics], 2005, vol.24, no. 4, pp. 84-94. (In Russian).
16. Yurkov A.N., Vlasova T.V., Krikunov G.A., Kononov M.A. Ispol'zovanie planarnogo magnetrona dlya napyleniya ferromagnitnykh plenok mikronnoj i nanometrovoj tolshchiny [Planar magnetron use for micron and nanometer thickness ferromagnetic film deposition], Prikladnaya fizika [Applied Physics], 2010, no. 3, pp. 103-108. (In Russian).
17. Sdobnyakov N.Yu., Antonov A.S., Zykov T. Yu. et al. Izmerenie vol't–ampernykh kharakteristik tunnel'nogo kontakta vol'fram–zoloto [The measurement of the current-voltage characteristics of a tunnel junction of the tungsten-gold] Измерение вольт–амперных характеристик туннельного контакта вольфрам–золото / Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2011, issue 3, pp. 206-216. (In Russian).
18. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykhplenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp. 473-486. (In Russian).
19. Ivanov D.V., Antonov A.S., Semenova E.M. et al. Determination of the fractal size of titanium films at different scales, Journal of Physics: Conference Series, 2021, vol. 1758, art. no. 012013, 6 p. DOI: 10.1088/1742-6596/1758/1/012013.