Formation of copper clusters in the process of biocorrosion of aluminum alloys by microscopic fungi
D.V. Belov1,2, S.N. Belyaev1,2, P.A. Yunin2, A.A. Nazarov2
1 Federal Research Center A.V. GaponovGrekhov Institute of Applied Physics of the RAS
2 The Institute for Physics of Microstructures – branch of the IAP RAS
DOI: 10.26456/pcascnn/2023.15.888
Original article
Abstract: In this work, biocorrosion of D16T and AMg6 aluminum alloys under the influence of microscopic fungi was studied. It has been shown that micromycetes produce reactive oxygen species – superoxide anion-radical, hydrogen peroxide, which initiate biocorrosion of metals. The composition products of biocorrosion of D16T and AMg6 after exposure of the alloys on the lawn of a consortium of micromycetes was determined by energy-dispersive X-ray spectroscopy. An X-ray phase study of alloy biocorrosion products was carried out. Scanning electron microscopy and X-ray diffraction analysis show the formation of nanosized and submicron copper clusters. A physicochemical mechanism of biocorrosion of aluminum alloys by microscopic fungi is proposed. An assumption is made about the mechanism of operation of the «zerovalent metal – hydrogen peroxide» systems, which can trigger a cascade of reactions leading to the destructive oxidation of metals. The paper attempts to explain the role of microfungal community biofilms as the main factor in the mycological corrosion of metals.
Keywords: biocorrosion, microbiological corrosion, aluminum alloys D16T, AMg6, zerovalent aluminum, zerovalent copper, microscopic fungi, reactive oxygen species, superoxide anion radical, hydrogen peroxide, copper clusters
- Denis V. Belov – Ph. D., Associate Professor, Senior Researcher, Federal Research Center A.V. GaponovGrekhov Institute of Applied Physics of the RAS, Leading technologist The Institute for Physics of Microstructures – branch of the IAP RAS
- Sergey N. Belyaev – Ph. D., Researcher, Head of Laboratory, Federal Research Center A.V. GaponovGrekhov Institute of Applied Physics of the RAS, Leading technologist The Institute for Physics of Microstructures – branch of the IAP RAS
- Pavel A. Yunin – Ph. D., Researcher, Head of Laboratory, The Institute for Physics of Microstructures – branch of the IAP RAS
- Artem A. Nazarov – Laboratory Assistant, Department of Technology, Nanostructures and Devices, The Institute for Physics of Microstructures – branch of the IAP RAS
Reference:
Belov, D.V. Formation of copper clusters in the process of biocorrosion of aluminum alloys by microscopic fungi / D.V. Belov, S.N. Belyaev, P.A. Yunin, A.A. Nazarov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2023. — I. 15. — P. 888-912. DOI: 10.26456/pcascnn/2023.15.888. (In Russian).
Full article (in Russian): download PDF file
References:
1. Zhao J., Csetenyi L., Gadd G.M. Biocorrosion of copper metal by Aspergillus niger, International Biodeterioration and Biodegradation, 2020, vol. 154, art. no. 105081, 10 p. DOI: 10.1016/j.ibiod.2020.105081.
2. Horeh N.B., Mousavi S.M., Shojaosadati S.A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, Journal of Power Sources, 2016, vol. 320, pp. 257-266. DOI: 10.1016/j.jpowsour.2016.04.104.
3. Lekbach Y. Y., Liu T., Li Y., Moradi M., Dou W., Xu D., Smith J.A., Lovley D.R. Microbial corrosion of metals: The corrosion microbiome, Advances in Microbial Physiology, 2021, vol. 78, pp. 317-390. DOI: 10.1016/bs.ampbs.2021.01.002.
4. Tang H.Y., Yang C., Ueki T. et al. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species, The ISME Journal, 2021, vol. 15, no. 10, pp. 3084-3093. DOI: 10.1038/s41396-021-00990-2.
5. Li S., Li L., Qu Q. et al. Extracellular electron transfer of Bacillus cereus biofilm and its effect on the corrosion behaviour of 316L stainless steel, Colloids and Surfaces B: Biointerfaces, 2019, vol. 173, pp. 139-147. DOI: 10.1016/j.colsurfb.2018.09.059.
6. Costerton J.W., Geesey G.G., Cheng K.J. How Bacteria Stick, Scientific American, 1978, vol. 238, issue 1, pp. 86-95. DOI: 10.1038/scientificamerican0178-86.
7. Lamin A., Kaksonen A.H., Cole I.S., Chen X.-B. Quorum sensing inhibitors applications: A new prospect for mitigation of microbiologically influenced corrosion, Bioelectrochemistry, 2022, vol. 145, art. no. 108050, 10 p. DOI: 10.1016/j.bioelechem.2022.108050.
8. Huang S., Bergonzi C., Smith S. et al. Field testing of an enzymatic quorum quencher coating additive to reduce biocorrosion of steel, bioRxiv, 2022, art. no. 518914, 31 p. DOI: 10.1101/2022.12.02.518914.
9. Mehmood A., Liu G., Wang X. et al. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: A review, Molecules, 2019, vol. 24, issue 10, art. no. 1950, 18 p. DOI: 10.3390/molecules24101950.
10. Wang Y., Zhang R., Duan J. et al. Extracellular polymeric substances and biocorrosion/biofouling: Recent advances and future perspectives, International Journal of Molecular Sciences, 2022, vol. 23, issue 10, art. no. 5566, 20 p. DOI: 10.3390/ijms23105566.
11. Pal M.K., Lavanya M. Microbial influenced corrosion: Understanding bioadhesion and biofilm formation, Journal of Bio- and Tribo-Corrosion, 2022, vol. 8, art. no. 76, 13 p. DOI: 10.1007/s40735-022-00677-x.
12. Belozerskaya T.A., Gessler N.N. Reactive oxygen species and the strategy of antioxidant defense in fungi: A review, Applied Biochemistry and Microbiology, 2007, vol. 43, issue 5, pp. 506-515. DOI: 10.1134/S0003683807050031.
13. Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nature Reviews Molecular Cell Biology, 2020, vol. 21, issue 7, pp. 363-383. DOI: 10.1038/s41580-020-0230-3.
14. Gessler N.N., Aver'yanov A.A., Belozerskaya T.A. Reactive oxygen species in regulation of fungal development, Biochemistry (Moscow), 2007, vol. 72, issue 10, pp. 1091-1109. DOI: 10.1134/S0006297907100070.
15. Aslanidi K.B., Ivanova A.E., Blazheevskaya Y.V. et al. Resistance of microscopic fungi to oxidative stress, Doklady Biochemistry and Biophysics, 2003, vol. 392, issue 1, pp. 241-243. DOI: 10.1023/a:1026178410988.
16. Hedison T.M., Breslmayr E., Shanmugam M. et al. Insights into the H2O2‐driven catalytic mechanism of fungal lytic polysaccharide monooxygenases, The FEBS Journal, 2021, vol. 288, issue 13, pp. 4115-4128. DOI: 10.1111/febs.15704.
17. Bissaro B., Røhr Å.K., Müller G. et al. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2, Nature Chemical Biology, 2017, vol. 13, issue 10, pp. 1123-1128. DOI: 10.1038/nchembio.2470.
18. Sideri M., Georgiou C.D. Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron, Mycologia, 2000, vol. 92, issue 6, pp. 1033-1042. DOI: 10.2307/3761468.
19. Zhang J., Miao Y., Rahimi M.J. et al. Guttation capsules containing hydrogen peroxide: an evolutionarily conserved NADPH oxidase gains a role in wars between related fungi, Environmental Microbiology, 2019, vol. 21, issue 8, pp. 2644-2658. DOI: 10.1111/1462-2920.14575.
20. Wiberth C.-C., Casandra A.-Z.C., Zhiliang F., Gabriela H. Oxidative enzymes activity and hydrogen peroxide production in white-rot fungi and soil-borne micromycetes co-cultures, Annals of Microbiology, 2018, vol. 69, issue 2, pp. 171-181. DOI: 10.1007/s13213-018-1413-4.
21. Xu W., Yu F., Yang L. et al. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin, Materials Science and Engineering: C, 2018, vol. 92, pp. 11-19. DOI: 10.1016/j.msec.2018.06.023.
22. Dong C., Yuan C., Bai X. et al. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments, Scientific Reports, 2017, vol. 7, issue 1, art. no. 2327, 9 p. DOI: 10.1038/s41598-017-02530-5.
23. Gong Z., Xie J., Liu J. et al. Oxidation towards enrofloxacin degradation over nanoscale zero-valent copper: mechanism and products, Environmental Science and Pollution Research, 2023, vol. 30, issue 13, pp. 38700-38712. DOI: 10.1007/s11356-022-24984-5.
24. Kumar S., Kaur P., Brar R.S., Babu J.N. Nanoscale zerovalent copper (nZVC) catalyzed environmental remediation of organic and inorganic contaminants: A review, Heliyon, 2022, vol. 8, issue 8, art. no. e10140, 21 р. DOI: 10.1016/j.heliyon.2022.e10140.
25. Belov D.V., Chelnokova M.V., Sokolova T.N., Kartashov V.R. O roli aktivnykh form kisloroda v initsiirovanii korrozii metallov mikroskopicheskimi gribami [On the role of reactive oxygen species in the initiation of metal corrosion by microscopic fungi], Korroziya: materialy, zashchita [Corrosion: Materials, Protection], 2009, no. 11, pp. 43-48 (in Russian).
26. Belov D.V., Chelnokova M.V., Sokolova T.N. et al. Generaciya superoksidnogo anion_radikala mikromicetami i ego rol v korrozii metallov [Generation of superoxide anion-radical by micromycetes and its role in metal corrosion], Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya [ChemChemTech], 2011, vol. 54, no. 10, pp. 133-136 (in Russian).
27. Bielski B.H.J., Cabelli D.E., Arudi R.L., Ross A.B. Reactivity of HO2/O2− radicals in aqueous solution, Journal of Physical and Chemical Reference Data, 1985, vol. 14, issue 4, pp. 1041-1100. DOI: 10.1063/1.555739.
28. Winterbourn C.C. Biological chemistry of superoxide radicals, ChemTexts, 2020, vol. 6, issue 1, art. no. 7, 13 p. DOI: 10.1007/s40828-019-0101-8.
29. Khudyakov I.V., Kuz’min V.A. Oxidation-reduction reactions of free radicals, Russian Chemical Reviews, 1978, vol. 47, issue 1, pp. 22-42. DOI: 10.1070/rc1978v047n01abeh002201.
30. Meisel D., Levanon H., Czapski G. Hydroperoxyl radical reactions. II. Cupric ions in modulated photolysis. Electron paramagnetic resonance experiments, The Journal of Physical Chemistry, 1974, vol. 78, issue 8, p. 779-782. DOI: 10.1021/j100601a004.
31. Pham A.N., Xing G., Miller C.J., Waite T.D. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production, Journal of Catalysis, 2013, vol. 301, pp. 54-64. DOI: 10.1016/j.jcat.2013.01.025.
32. Belov D.V., Belyaev S.N., Maksimov M.V., Gevorgyan G.A. Research of corrosion cracking of D16T and Amg6 aluminum alloys exposed to microscopic fungi, Inorganic Materials: Applied Research, 2022, vol. 13, issue 6, pp. 1640-1651. DOI: 10.1134/s2075113322060028.
33. Koval E.Z., Sidorenko L.P. Mikodestruktory promyshlennykh materialov [Mikodestructors of industrial materials]. Kiev, Naukova dumka Publ., 1989, 192 p. (in Russian).
34. Sutton D., Fothergill A., Rinaldi M. Opredelitel' patogennykh i uslovno patogennykh gribov [The determinant of pathogenic and conditionally pathogenic fungi]. Moscow. Mir Publ., 2001, 486 p. (in Russian).
35. Berridge M.V., Herst P.M., Tan A.S. Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction, Biotechnology Annual Review, 2005, vol. 11, pp. 127-152. DOI: 10.1016/s1387-2656(05)11004-7.
36. Seidler E. The tetrazolium-fomazan system: design and histochemistry, Progress in Histochemistry and Cytochemistry, 1991, vol. 24, issue 1, pp. 3-79. DOI: 10.1016/s0079-6336(11)80060-4.
37. Fridovich I. Superoxide Radical and Superoxide Dismutases, Annual Review of Biochemistry, 1995, vol. 64, issue 1, pp. 97-112. DOI: 10.1146/annurev.bi.64.070195.000525.
38. Burns J.M., Cooper W.J., Ferry J.L. et al. Methods for reactive oxygen species (ROS) detection in aqueous environments, Aquatic Sciences, 2012, vol. 74, issue 4, pp. 683-734. DOI: 10.1007/s00027-012-0251-x.
39. Pobiner H. Determination of hydroperoxides in hydrocarbon by conversion to hydrogen peroxide and measurement by titanium complexing, Analytical Chemistry, 1961, vol. 33, issue 10, pp. 1423-1426. DOI: doi.org/10.1021/ac60178a045.
40. Belov D.V., Belyaev S.N., Maksimov M.V., Gevorgyan G.A. O mekhanizme biokorrozii splavov alyuminiya D16T i AMg6 (obzor) [On mechanism of biocorrosion of aluminum alloys D16T and AMg6 (Review)], Korroziya: materialy, zashchita [Corrosion: Materials, Protection], 2021, no. 10. pp. 1-22. DOI: 10.31044/1813-7016-2021-0-10-1-22. (in Russian).
41. Belov D.V., Belyaev S.N., Gevorgyan G.A., Maksimov M.V. Physicoсhemical features of the mechanism of the biocorrosion of D16T duralumin by microscopic fungi, Russian Journal of Physical Chemistry A, 2022, vol. 96, issue 8, pp. 1599-1614. DOI: 10.1134/S0036024422080052.
42. Merkel T.H., Pehkonen S.O. General corrosion of copper in domestic drinking water installations: scientific background and mechanistic understanding, Corrosion Engineering, Science and Technology, 2006, vol. 41, issue 1, pp. 21-37. DOI: 10.1179/174327806X94009.
43. Krymskiy S.V., Ilyasov R.R., Avtokratova E.V., Sitdikov O.Sh., Markushev M.V. Intergranular corrosion of cryorolled and aged D16 aluminum alloy, Protection of Metals and Physical Chemistry of Surfaces, 2017, vol. 53, issue 6, pp. 1091-1099. DOI: 10.1134/S2070205117060144.