Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Nanostructured catalysts of the turpentine emulsion polymerization under the influence of potassium persulphate

A.A. Ostroushko1, S.Yu.. Menshikov2, D.A. Rozhentsev3, N.K. Tkachev3, A.Ya.. Golub1, M.O. Tonkushina1

1 Ural Federal University named after the first President of Russia B.N. Yeltsin
2 Ural State Mining University
3 The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

DOI: 10.26456/pcascnn/2022.14.829

Original article

Abstract: We have revealed the catalytic activity for initiating the water-emulsion turpentine polymerization of some nanostructured materials such as Keplerate type Mo72Fe30 nanocluster polyoxometalate, nanoporous iron and nanoporous composite of intermetallic compounds Pd2In@Pd3In obtained by dealloying of equiatomic alloys Fe – Mn and Pd – In. For polyoxometalate solutions and nanoporous metal samples, respectively, the yield of sufficiently pure polyterpene resins when using the potassium persulphate initiation depends on the nature of the contact between the catalysts and substrates: solid-liquid-liquid or liquid-liquid. A system that did not contain catalysts was taken as the reaction medium for comparison. Based on the obtained data on the softening point, the molecular weight of the resin samples was determined. Infrared spectroscopy was used to identify the obtained products. In the reaction medium (mainly aqueous) after the isolation of polyterpene resins, chromatographic analysis revealed so valuable products as alpha-terpineol, which is used as an intermediate for obtaining flavors and flotation agents.

Keywords: Nanostructured initiation catalysts, polyoxometalates, metals, emulsion polymerization, turpentine, polyterpene resins, potassium persulfate

  • Alexander A. Ostroushko – Dr. Sc., Professor, Chief Researcher, Head of Department of Chemical Materials Science, Ural Federal University named after the first President of Russia B.N. Yeltsin
  • Sergei Yu.. Menshikov – Ph. D., Docent, Chemistry Department, Ural State Mining University
  • Danil A. Rozhentsev – Junior Researcher, The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
  • Nikolai K. Tkachev – Dr. Sc., Chief Researcher, Molten Salts Laboratory, The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences
  • Alexey Ya.. Golub – Assistant, Department of Analytical Chemistry and Environmental Chemistry, Institute of Natural Sciences and Mathematics, Ural Federal University named after the first President of Russia B.N. Yeltsin
  • Margarita O. Tonkushina – Ph. D., Researcher, Department of Chemical Materials Science, Institute of Natural Sciences and Mathematics, Ural Federal University named after the first President of Russia B.N. Yeltsin

Reference:

Ostroushko, A.A. Nanostructured catalysts of the turpentine emulsion polymerization under the influence of potassium persulphate / A.A. Ostroushko, S.Yu.. Menshikov, D.A. Rozhentsev, N.K. Tkachev, A.Ya.. Golub, M.O. Tonkushina // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 829-837. DOI: 10.26456/pcascnn/2022.14.829. (In Russian).

Full article (in Russian): download PDF file

References:

1. Ustimenko Yu.P., Agafontsev A.M., Tkachev A.V. Synthesis of chiral pinopyridines using catalysis by metal complexes, Chemistry of Heterocyclic Compounds, 2022, vol. 58, issue 2-3, pp. 135-143. DOI: 10.1007/s10593-022-03066-x.
2. Il`inа I.I., Maksimchuk N.V., Semikolenov V.A. Kataliticheskij sintez dushistykh veshchestv iz rastitel'nykh monoterpenov [Catalytic synthesis of aromatic substances from plant monoterpenes], Rossijskij himicheskij zhurnal [Russian Chemical Journal], 2004, vol. 48, no. 3, pp. 38-53. (In Russian).
3. Men’shikov S.Yu, Mishina Yu.V., Mikushina Yu.V., Ostroushko A.A. A comparative study of aerobic oxidation of turpentine, Russian Journal of Applied Chemistry, 2008, vol. 81. no. 1, pp. 52-54. DOI: 10.1007/s11167-008-1012-4.
4. Roberts W.J., Day A.R. Study of the polymerization of α– and β–pinene with friedel–crafts type catalysts, Journal of the American Chemical Society, 1950, vol. 72, issue 3, pp. 1226-1230. DOI: 10.1021/ja01159a044.
5. Sahu, P., Bhowmick A.K., Kali G. Terpene based elastomers: synthesis, properties, and applications, Processes, 2020, vol. 8, issue 5, art. no. 553, 21 p. DOI: 10.3390/pr8050553.
6. Liu S., Zhou L., Yu S. et al. Polymerization of α-pinene using Lewis acidic ionic liquid as catalyst for production of terpene
resin, Biomass and Bioenergy, 2013. vol. 57, pp. 238-242. DOI: 10.1016/j.biombioe.2013.06.005.
7. Rabdil A.B., Shurinova T.A., Starostina E.B., Rabdil B.A. Polimerizatsiya al'fa-pinena v prisutstvii katalizatorov Fridelya-Kraftsa [Polymerization of Alpha-Pinene in the Presence of Friedel-Crafts Catalysts], Khimiya rastitel'nogo syr'ya [Chemistry of Plant Raw Materials], 2004, no. 4, pp. 39-48. (In Russian).
8. Ryazanova T.V., Tikhomiriova G.V., Soboleva S.V., Rabdil A.B. Kineticheskie zakonomernosti protsessa izomerizatsii skipidara na tseolite «Sakhaptin» [Kinetic regularities of the process of turpentine isomerization on zeolite «Sahaptin»], Khimiya rastitel'nogo syr'ya [Chemistry of Plant Raw Materials], 2000, no. 1, pp. 89-93. (In Russian).
9. Johanson A.J. McKennon F.L., Goldblatt L.A. Emulsion polymerization of myrcene, Industrial & Engineering Chemistry, 1948, vol. 40, issue 3, pp. 500-502. DOI: 10.1021/ie50459a033.
10. Noppalit S., Simula A., Ballard N. et al. A renewable terpene derivative as a bio-sourced elastomeric building block in the design of functional acrylic copolymers, Biomacromolecules, 2019, vol. 20, issue 6, pp. 2241-2251. DOI: 10.1021/acs.biomac.9b00185.
11. Braun D., Cherdron H., Kern W. Praktikum der makromolekularen organischen Chemie. Verlag, Heidelberg, 1966, 250 p. (In German).
12. Eliseeva I.V., Ivanchev S.S., Kuchanov S.I., Lebedev A.V. Emul'sionnaya polimerizatsiya i ee primenenie v promyshlennosti [Emulsion polymerization and its application in industry]. – Moscow, Khimiya Publ., 1976, 239 p.
13. Harvey B.G., Guenthner A.J., Koontz T.A. et al. Sustainable hydrophobic thermosetting resins and polycarbonates from turpentine, Green Chemistry, 2016, vol. 18, issue 8, pp. 2416-2423. DOI: 10.1039/c5gc02893k.
14. Ng F., Couture G., Philippe C., Boutevin B., Caillol S. Bio-based aromatic epoxy monomers for thermoset materials, Molecules, 2017, vol. 22, issue 1, art. no. 149, 48 p. DOI: 10.3390/molecules22010149.
15. Menshikov S.Yu., Belozerova K.A., Ostroushko A.A. Vozdejstvie nanoklasternogo polioksometallata {Mo72Fe30} na okislenie persul'fatom jodid-ionov [Influence of the nanocluster {Mo72Fe30} polyoxometalate on oxidation of iodine-ions by persulfate], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 853-859. DOI: 10.26456/pcascnn/2020.12.853. (In Russian).
16. Rozhentsev D.A., Mansurov R.R., Tkachev N.K., Russkikh O.V., Ostroushko А.А. Kataliticheskie svoistva v geterogennoi reaktsii Fentona poverkhnosti nanoporistogo zheleza, poluchennogo posredstvom ehlektrokhimicheskogo dealloinga v rasplavlennykh khloridnykh smesyakh [Catalytic properties in the heterogeneous Fenton reaction of the surface of nanoporous iron obtained by electrochemical dealloying in melted chloride mixtures], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 919-927. DOI: 10.26456/pcascnn/2021.13.919. (In Russian).
17. Müller A., Sarkar S., Shah S.Q.N. et al. Archimedean synthesis and magic numbers: «sizing» giant molybdenum-oxide-based molecular spheres of the keplerate type, Angewandte Chemie International Edition, 1999, vol. 38, issue 21, pp. 3238-3241. DOI: 10.1002/(SICI)1521-3773(19991102)38:21<3238::AID-ANIE3238>3.0.CO;2-6.
18. Mokhtari R., Rezaeifard A., Jafarpour M., Farrokhi A. Visible-light driven catalase-like activity of blackberry-shaped Mo72Fe30 nanovesicles: combined kinetic and mechanistic studies, Catalysis Science & Technology, 2018, vol. 8. issue 18, pp. 4645-4656. DOI: 10.1039/c8cy00603b.
19. Rozhentsev D.A., Shurov N.I., Tkachev N.K. Synthesis of a Pd2In – Pd3In bi-continuous nanoporous structure by electrochemical dealloying in molten salts, Dalton Transactions, 2021, vol. 50, issue 45, pp. 16720-16725. DOI: 10.1039/D1DT03034E.
20. Kokina T.E., Glinskaya L.A., Marenin K.S. et al. Complexes PdCl2 with optically active hybrid ligands built of α–pinene and β–alanine molecules, Russian Journal of Coordination Chemistry, 2017, vol. 43, no. 4. pp. 213-222. DOI: 10.1134/S1070328417030034.
21. Jeon J., Ham H., Xing F. et al. PdIn–based pseudo-binary alloy as a catalyst for NOx removal under lean conditions, ACS Catalysis, 2020, vol. 10, issue 19, pp. 11380-11384. DOI: 10.1021/acscatal.0c03427.
22. García-Trenco A., Regoutz A., White E.R. et al. PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol, Applied Catalysis B: Environmental, 2018, vol. 220, pp. 9-18. DOI: 10.1016/J.APCATB.2017.07.069.
23. Skipidar sul'fatnyj ochishchennyj [Purified sulfate turpentine]. Specifications RF, no. 13-0281078-36-89. Moscow, 1990. 24 p. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒