Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Lanthanum manganite nanopowders synthesis via combustion reactions under the influence of electromagnetic field

A.A. Ostroushko, T.Yu.. Zhulanova (Maksimchuk), E.V. Kudyukov, I.D. Gagarin, O.V. Russkikh

Ural Federal University named after the first President of Russia B.N. Yeltsin

DOI: 10.26456/pcascnn/2022.14.820

Original article

Abstract: Lanthanum manganite doped with strontium samples were synthesized by the combustion method of nitrate-organic precursors of different composition. The combustion process was realized under the influence of an external alternating electromagnetic field and in its absence. It was found that thermochemical generation of charges occurs during precursor’s combustion, recorded as a potential difference of precursor-earth. It is shown that the composition of the initial precursor (organic component and its quantity), as well as the presence of an external alternating electromagnetic field, affect the magnitude of the potential difference that occurs, varying from -7 to 125 V. The relationship between the studied electromagnetic properties (saturation magnetization, coercive force, Curie temperature) of the obtained samples and the precursor–earth potential difference arising during synthesis is shown. The Curie temperature values varied in the range of 38-79°C for samples obtained under the influence of an alternating electro-magnetic field, and 49-104°C in its absence.

Keywords: Complex oxides, lanthanum manganite, synthesis, combustion reactions, charges, electromagnetic field, magnetic properties

  • Alexander A. Ostroushko – Dr. Sc., professor, Chief Researcher, Head of Department of Chemical Materials Science, Ural Federal University named after the first President of Russia B.N. Yeltsin
  • Тatiana Yu.. Zhulanova (Maksimchuk) – Laboratory Assistant-Researcher, Department of Chemical Materials Science, Ural Federal University named after the first President of Russia B.N. Yeltsin
  • Egor V. Kudyukov – Junior Researcher, Department of Magnetism of Solids, Ural Federal University named after the first President of Russia B.N. Yeltsin
  • Ilya D. Gagarin – Junior Researcher, Department of Chemical Materials Science, Ural Federal University named after the first President of Russia B.N. Yeltsin
  • Olga V. Russkikh – Ph. D., Senior Researcher, Department of Chemical Materials Science, Ural Federal University named after the first President of Russia B.N. Yeltsin

Reference:

Ostroushko, A.A. Lanthanum manganite nanopowders synthesis via combustion reactions under the influence of electromagnetic field / A.A. Ostroushko, T.Yu.. Zhulanova (Maksimchuk), E.V. Kudyukov, I.D. Gagarin, O.V. Russkikh // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 820-828. DOI: 10.26456/pcascnn/2022.14.820. (In Russian).

Full article (in Russian): download PDF file

References:

1. Lim E., Kim Y.J., Kim J.H. et al NO oxidation activity of Ag-doped perovskite catalysts, Journal of Catalysis, 2014, vol. 319, pp. 182-193. DOI: 10.1016/j.jcat.2014.09.007.
2. Russkikh O.V., Ivanov D.V., Isupova L.A. et al. Synthesis, morphology, and activity of La1-xAgxMnO3±y catalysts, Kinetics and Catalysis, 2016, vol. 57, issue 5, pp. 712-721. DOI: 10.1134/S0023158416050165.
3. Ifrah S., Kaddouri A., Gelin P., Leonard D. Conventional hydrothermal process versus microwave-assisted hydrothermal synthesis of La1-xAgxMnO3+ (x=0, 0.2) perovskites used in methane combustion, Comptes Rendus Chimie, 2007, vol. 10, issue 12, pp. 1216-1226. DOI: 10.1016/j.crci.2007.08.002.
4. Liu Y., Sun T., Dong G., Zhang S., Liu X. Electrical conduction in La0.85Sr0.15MnO3:Agx (0≤ x≤ 0.5) ceramics with large room-temperature TCR, Ceramics International, 2019, vol. 45, issue 18, pp. 24070-24077. DOI: 10.1016/j.ceramint.2019.08.113.
5. Bubnovskaya L., Belous A., Solopan S. et al. Magnetic fluid hyperthermia of rodent tumors using manganese perovskite nanoparticles, Journal of Nanoparticles, 2014, vol. 2014, art. id 278761, 9 p. DOI: 10.1155/2014/278761.
6. Joseph S., John R.E., Saban K.V. Unraveling the effects Mn-site doping on structural, magnetic and magnetotransport properties of Nd0.67Sr0.33Mn0.9T0.1O3 (T= Mn, Fe, Cr, Ni), Ceramics International, 2019, vol. 45, issue 17, pp. 21249-21262. DOI:10.1016/j.ceramint.2019.07.107.
7. Sukhorukov Yu.P., Gan’shina E.A., Loshkareva N.N. et al. Evolution of magnetooptical and transport properties of La1-xAgxMnO3 films depending on silver concentration, Journal of Experimental and Theoretical Physics, 2007, vol. 104, issue 4, pp. 569-576. DOI: 10.1134/S1063776107040073.
8. Szewczyk A., Gutowska M., Piotrowski K., Dąbrowski B. Direct and specific heat study of magnetocaloric effect in La0.845Sr0.155MnO3, Journal of Applied Physics, 2003, vol. 94, issue 3, pp. 1873-1876. DOI:10.1063/1.1591411.
9. Komova O.V., Mukha S.A., Ozerova A.M. et al. The formation of perovskite during the combustion of an energy-rich glycine–nitrate precursor, Materials, 2020, vol. 13, issue 22, art. no. 5091, 18 p. DOI: 10.3390/ma13225091.
10. Ostroushko A.A., Russkikh O.V. Oxide material synthesis by combustion of organic-inorganic compositions, Nanosystems: Physics, Chemistry, Mathematics, 2017, vol. 8, issue 4, pp. 476-502. DOI: 10.17586/2220-8054-2017-8-4-476-502.
11. Ostroushko A.A., Russkikh O.V., Gagarin I.D., Filonova E.A. Izuchenie generirovaniya zaryadov pri sinteze nanorazmernykh slozhnykh oksidov v reaktsiyakh goreniya organo-neorganicheskikh prekursorov [Study of the charge generation in the synthesis of nanosized complex oxides in the combustion reactions of organo-inorganic precursors], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 215-222. DOI: 10.26456/pcascnn/2019.11.215. (in Russian).
12. Popkov V.I., Almjasheva O.V., Nevedomskiy V.N. et al. Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products, Ceramics International, 2018, vol. 44, issue 17, pp. 20906-20912. DOI: 10.1016/j.ceramint.2018.08.097.
13. Deganello F., Marci G., Deganello G. Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach, Journal of the European Ceramic Society, 2009, vol. 29, no. 3, pp. 439-450. DOI: 10.1016/j.jeurceramsoc.2008.06.012.
14. Ostroushko A.A., Russkikh O.V., Maksimchuk T.Yu. Charge generation during the synthesis of doped lanthanum manganites via combustion of organo-inorganic precursors, Ceramics International, 2021, vol. 47, issue 15, pp. 21905-21914. DOI: 10.1016/j.ceramint.2021.04.208.
15. Ostroushko A.A., Maksimchuk T.Y., Permyakova A.E., Russkikh O.V. Determinative factors for the thermochemical generation of electric charges upon combustion of nitrate–organic precursors for materials based on lanthanum manganite and cerium dioxide, Russian Journal of Inorganic Chemistry, 2022, vol. 67, issue 6, pp. 799-809. DOI: 10.1134/S0036023622060171.
16. Maksimov Yu.M., Itin V.I., Smolyakov V.K., Kirdyashkin A.I. SVS v ehlektricheskikh i magnitnykh polyakh [SHS in electric and magnetic fields], Vestnik RFFI [RFBR Journal], 2005, no. 2 (40), pp. 18-34. (In Russian).
17. Kuznetsov M.V. Vysokotemperaturnyj sintez neorganicheskikh materialov v usloviyakh vneshnikh fizicheskikh vozdejstvij i issledovaniya ikh fiziko-khimicheskikh kharakteristik [High-temperature synthesis of inorganic materials under conditions of external physical influences and studies of their physico-chemical characteristics], Innovatsionnaya nauka [Innovative Science], 2021, no. 10-1, pp. 6-9. (In Russian).
18. Gubin S.P., Koksharov Yu.A., Khomutov G.B., Yurkov G.Yu. Magnetic nanoparticles preparation, structure and properties,
Russian Chemical Reviews, 2005, vol. 74, issue 6, pp. 489-520. DOI: 10.1070/RC2005v074n06ABEH000897.
19. Liu S. Structural and magnetic properties of high magnetic-field-assisted hydrothermal synthesized Bi6Fe2Ti3O18 particles, Modern Physics Letters B, 2020, vol. 34, no. 3, art. no. 2050043, 11 p. DOI: 10.1142/S0217984920500438.
20. Spirt polivinilovyj. Tekhnicheskie usloviya: GOST 10779-78 [Polyvinyl alcohol. Specifications: State Standard 10779-78]. Moscow, IPK Standartov Publ., 1987. 24 p. (In Russian).
21. Zhang N., Yang W., Ding W., Xing D., Du Y. Grain size-dependent magnetism in fine particle perovskite, La1-xSrxMnOz, Solid State Communications, 1999, vol. 109, issue 8, pp. 537-542. DOI: 10.1016/S0038-1098(98)00585-7.

⇐ Prevoius journal article | Content | Next journal article ⇒