Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Formation of cobalt hydroxosilicate in amorphous silica matrix

I.S. Medyankina1, K.I. Svetlakova2, L.A. Pasechnik1

1 Institute of Solid State Chemistry of the Ural Branch of RAS
2 Institute of Chemical Technology, Ural Federal University named after the first President of B.N. Yeltsin

DOI: 10.26456/pcascnn/2022.14.800

Original article

Abstract: The synthesis of cobalt hydroxysilicate Co3(Si2O5)2(OH)2 in a matrix of high dispersity amorphous silica has been proposed. It is shown the formation of a hydroxosilicate, which combines coordinated silica and cobalt-oxygen polyhedrons in the overall structure, as well as the availability of surface hydroxyl groups, contribute to the preservation of a high specific surface area as is in amorphous SiO2. The hydroxosilicate also contributes to the effective manifestation of photocatalytic properties due to the presence of cobalt (2+), which has a high reactivity. As methods of synthesis of SiO2/Сo composites hydrochemical methods are used by impregnation and autoclave treatment with solution of cobalt formate of silica. The influence of the amount of introduced cobalt on the composition, structure, and properties of a composite material containing Co3(Si2O5)2(OH)2 in a SiOmatrix has been traced. SiO2/Co composites have been tested in the hydroquinone photooxidation reaction when exposed to ultraviolet radiation. The highest degree of hydroquinone decomposition amounting to 84% in 18 hours was achieved for SiO2/Co at a molar ratio of components Co:Si = 0.01:1.

Keywords: amorphous silica, cobalt silicate, hydrothermal synthesis, mechanosynthesis, microstructure, photocatalysis, hydroquinone

  • Irina S. Medyankina – Junior Researcher, Laboratory of Heterogeneous Processes, Institute of Solid State Chemistry of the Ural Branch of RAS
  • Ksenia I. Svetlakova – 2nd year graduate student, Departments of Analytical Chemistry, Institute of Chemical Technology, Ural Federal University named after the first President of B.N. Yeltsin
  • Liliya A. Pasechnik – Ph. D., Leading Researcher, Laboratory of Heterogeneous Processes, Institute of Solid State Chemistry of the Ural Branch of RAS

Reference:

Medyankina, I.S. Formation of cobalt hydroxosilicate in amorphous silica matrix / I.S. Medyankina, K.I. Svetlakova, L.A. Pasechnik // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 800-810. DOI: 10.26456/pcascnn/2022.14.800. (In Russian).

Full article (in Russian): download PDF file

References:

1. Won J.M., Young J.H., Jong H.K., Choi Y.J., Kang Y.C. Electrochemical properties of core-shell structured NiO@SiO2 ultrafine nanopowders below 10 nm for lithium-ion storages, Electrochimica Acta, 2016, vol. 190. pp. 835-842. DOI: 10.1016/j.electacta.2015.12.197.
2. Rahimabady Z., Bagheri – Mohagheghi M.M., Shirpay A. SiO2@NiO core/ shell nanoparticles as high-performance anode materials: Synthesis and characterizations of structural, optical and magnetic properties, Surfaces and Interfaces, 2022, vol. 29, art. no. 101801, 10 p. DOI: 10.1016/j.surfin.2022.101801.
3. Somboonthanakij S., Mekasuwandumrong O., Panpranot J. et al. Characteristics and catalytic properties of Pd/SiO2 synthesized by one-step flame spray pyrolysis in liquid-phase hydrogenation of 1-heptyne, Catalysis Letters, 2007, vol. 119, issue 3-4, pp. 346-352. DOI: 10.1007/s10562-007-9242-2.
4. Sotiriou G.A., Franco D., Poulikakos D., Ferrari A. Optically stable biocompatible flame-made SiO2-coated Y2O3:Tb3+ nanophosphors for cell imaging, ACS Nano, 2012, vol. 6, issue 5, pp. 3888-3897. DOI: 10.1021/nn205035p.
5. Zhang S., Xu J. W., Zeng M., Li J., Li J., Xu J., Wang X. Superior adsorption capacity of hierarchical iron oxide@magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution, Materials Chemistry A, 2013, vol. 1, issue 38, pp. 11691-11697. DOI: 10.1039/c3ta12767b.
6. Wang Q.Q., Qu J., Liu Y. et al. Growth of nickel silicate nanoplates on reduced graphene oxide as layered nanocomposites for highly reversible lithium storage, Nanoscale, 2015, vol. 7, issue 40, pp. 16805-16811. DOI: 10.1039/c5nr05719a.
7. Loaiza L.C., Monconduit L., Seznec V. Si and Ge‐based anode materials for Li+, Na+, and K+ ion batteries: A perspective from structure to electrochemical mechanism, Small, 2020, vol. 16, art. no. 1905260, 29 p. DOI: 10.1002/smll.201905260.
8. Li X., Ding S., Xiao X. et al. N,S co-doped 3D mesoporous carbon–Co3Si2O5(OH)4 architectures for high-performance flexible pseudo-solid-state supercapacitors, Materials Chemistry A, 2017, vol. 5, issue 25, pp. 12774-12781. DOI: 10.1039/C7TA03004E.
9. Huang X., Wang P., Zhang Z. et al. Efficient conversion of CO2 to methane using thin-layer SiOx matrix anchored nickel catalysts, New Journal of Chemistry, 2019, vol. 43, issue 33, pp. 13217-13224. DOI: 10.1039/C9NJ03152A.
10. Liu Q. Duan X., Sun H., Wang Y., Tade M.O., Wang S. Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation, The Journal of Physical Chemistry C, 2016, vol. 120, issue 30, pp. 16871-16878. DOI: 10.1021/acs.jpcc.6b05934.
11. Shabalina A.V. Gotovtseva E.Y., Belik Y.A. et al. Electrochemical study of semiconductor properties for bismuth silicate-based photocatalysts obtained via hydro-/solvothermal approach, Materials, 2022, vol. 15, issue 12, art. no. 4099, 18 p. DOI: 10.3390/ma15124099.
12. Vodyankin A.A., Ushakov I.P., Belik Y.A., Vodyankina O.V. Synthesis and photocatalytic properties of materials based on bismuth silicates, Kinetics and catalysis, 2017, vol. 58, issue 5, pp. 593-600. DOI: 10.1134/S0023158417050238.
13. Kozhevnikova N.S., Melkozerova M.A., Enyashin A.N. et al. Janus ZnS nanoparticles: synthesis and photocatalytic properties, Journal of Physics and Chemistry of Solids, 2022, vol. 161, art. no. 110459. 9 p. DOI: 10.1016/j.jpcs.2021.110459.
14. Al-Mamun M.R., Kader S., Islam M.S., Khan M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review, Journal of Environmental Chemical Engineering, 2019, vol. 7, art. no. 103248, 17 p. DOI: 10.1016/j.jece.2019.103248.
15. Kozhevnikova N.S., Shalaeva E.S., Enyashin E.V., Vorokh A.N., Ulyanova A.S. Study of structural, spectroscopic and photo-oxidation properties of in-situ synthesized Sc-doped titania, Journal of Molecular Liquids, 2019, vol. 284, pp. 29-38. DOI: 10.1016/j.molliq.2019.03.163.
16. Gyrdasova, О.I., Shalaeva E.V., Krasil’nikov V.N. et al. Effect of Cu+ ions on the structure, morphology, optical and photocatalytic properties of nanostructured ZnO, Materials Characterization, 2021, vol. 179, art. no. 111384, 12 p. DOI: 10.1016/j.matchar.2021.111384.
17. Gyrdasova О.I., Pasechnik L.A., Krasil’nikov V.N., Syrikov V.T., Kuznetsov M.V. Sorbcionnaya i fotokataliticheskaya aktivnost’ Zn1-xCuxO (x=0,05 and 0,15) k As (III) v shchelochnoj srede [Sorpion and photocatalytic activity of Zn1-xCuxO (x=0,05 i 0,15) to As (III) in an alkaline medium], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov[Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 792-804. DOI: 10.26456/pcascnn/2020.12.792. (In Russian).
18. Pishch I.V., Maslennikova G.N., Podbolotov K.B., Karizna Yu.A., Belyakovich I.V. Silica based pigments, Glass and Ceramics, 2019, vol. 68, issue 1-2, pp. 71-75. DOI: 10.1007/s10717-011-9324-x.
19. Medyankina I.S., Skachkov V.M., Pasechnik L.A. Kinetika gidrohimicheskogo ftorirovania krimniisoderjashih othodov tittanomagnetitovih rud [Kinetics aspect of hydrochemical fluorination of siliconcontaining industrial waste], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov[Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, vol. 13, pp. 900-909. DOI: 10.26456/pcascnn/2021.13.900. (In Russian).
20. Nguyen P.Q.H., Zhang D., Rapp R., Bradley J. P., Dera P. Room temperature facile synthesis of olivine-Co2SiO4 nanoparticles utilizing a mechanochemical method, RSC Advances, 2021, vol. 11, issue 34, pp. 20687-20690. DOI: 10.1039/d1ra02760c.
21. Powder Diffraction File JCPDSD-ICDD PDF-2 (Release, 2016). – Режим доступа: www.url: https://www.icdd.com/pdf-2/. – 15.08.2020.
22. Zhu Z.-S., Yu X.-J., Qu J. et al. Preforming abundant surface cobalt hydroxyl groups on low crystalline flowerlike Co3(Si2O5)2(OH)2 for enhancing catalytic degradation performances with a critical nonradical reaction, Applied Catalysis B: Environmental, 2020, vol. 261, art. no. 118238, 12 p. DOI: 10.1016/j.apcatb.2019.118238.

⇐ Prevoius journal article | Content | Next journal article ⇒