Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Composites based on calcium phosphate foam ceramic and hydroxyapatite gel

V.K. Krut’ko, L.Yu.. Maslova, O.N. Musskaya, A.I. Kulak

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

DOI: 10.26456/pcascnn/2022.14.791

Original article

Abstract: Bioactive calcium phosphate composites were obtained, consisting of open-pore multiphase calcium phosphate foam ceramic based on α / β-tricalcium phosphate, β-calcium pyrophosphate, biomimetic apatite and 5% hydroxyapatite gel at a mass ratio (ceramic foam / hydroxyapatite gel) of 1:3 and 1:10. Preliminary modification of the calcium phosphate foam ceramic with biomimetic apatite in a concentrated SBF×5 solution allows increasing the static strength to 0,05 MPa with a slight decrease in porosity and maintaining the open-pore structure of polyurethane foam. Calcium phosphate composites have increased resorbability in SBF×5 and are resorbed 3–5 times faster compared to calcium phosphate foam ceramic. The presence of a significant amount of hydroxyapatite gel increases the rate of resorption of calcium phosphate foam ceramic and the ongoing processes of apatite formation with the participation of SBF×5 ions due to its high reactivity. The obtained calcium phosphate composites are used in regenerative treatments to fill bone defects in unloaded areas.

Keywords: calcium phosphate foam ceramic, tricalcium phosphate, hydroxyapatite gel, simulated body fluid, biomimetic apatite, resorbability

  • Valentina K. Krut’ko – Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Lyubov Yu.. Maslova – Junior Researcher, Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Olga N. Musskaya – Ph. D., Assistant Professor, Leading Researcher, Photochemistry and Electrochemistry Laboratory, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus
  • Anatoly I. Kulak – Academician, D. Sc., Professor, Director, Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Reference:

Krut’ko, V.K. Composites based on calcium phosphate foam ceramic and hydroxyapatite gel / V.K. Krut’ko, L.Yu.. Maslova, O.N. Musskaya, A.I. Kulak // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 791-799. DOI: 10.26456/pcascnn/2022.14.791. (In Russian).

Full article (in Russian): download PDF file

References:

1. Díez-Escudero A., Espanol M., Beats S., Ginebra M.-P. In vitro degradation of calcium phosphates: effect of multiscale porosity, textural properties and composition, Acta Biomaterialia, 2017, vol. 60, pp. 81-92. DOI: 10.1016/j.actbio.2017.07.033.
2. Hutmacher D.W., Schantz J.T., Lam C.X.F. et al. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, Journal of Tissue Engineering and Regenerative Medicine, 2007, vol. 1, issue 4, pp. 245-260. DOI: 10.1002/term.24.
3. Bohner M. Resorbable biomaterials as bone graft substitutes, Materials Today, 2010, vol. 13, issue 1-2, pp. 24-30. DOI: 10.1016/S1369-7021(10)70014-6.
4. Wang J., Wang M., Chen F. et al. Nano-hydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis Via BMP/Smad signaling pathway, International Journal of Nanomedicine, 2019, vol. 14, pp. 7987–8000. DOI: 10.2147/IJN.S216182.
5. Dimitriou R., Jones E., McGonagle D., Giannoudis P.V. Bone regeneration: current concepts and future directions, BMC Medicine, 2011, vol. 9, issue 1, art. no. 66, 10 p. DOI: 10.1186/1741-7015-9-66.
6. Hutmacher D.W. Scaffolds in tissue engineering bone and cartilage, Biomaterials, 2000, vol. 21, issue 24, pp. 2529-2543. DOI: 10.1016/s0142-9612(00)00121-6.
7. Vallet-Regí M., González-Calbet J.M. Calcium phosphates as substitution of bone tissues, Progress in Solid State Chemistry, 2004, vol. 32, issue 1-2, pp. 1-31. DOI: 10.1016/j.progsolidstchem.2004.07.001.
8. Safronova T.V., Korneichuk S.A., Putlyaev V.I., Krut’ko V.K. Keramika na osnove gidroksiapatita kal'tsiya, sintezirovannogo iz atsetata kal'tsiya, gidroksida kal'tsiya i gidrofosfata kaliya [Ceramics based on calcium hydroxyapatite synthesized from calcium acetate, calcium hydroxide, and potassium hydrophosphate], Steklo i Keramika [Glass and Ceramics], 2012, vol. 69, issue 1, pp. 30-36. (In Russian).
9. Tavoni M., Dapporto M., Tampieri A., Sprio S. Bioactive calcium phosphate-based composites for bone regeneration, Journal of Composites Science, 2021, vol. 5, issue 9. art. no. 227, 27 p. DOI: 10.3390/jcs5090227.
10. Barrère F., van Blitterswijk C.A., de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics, International Journal of Nanomedicine, 2006, vol. 1, issue 3, pp. 317-332.
11. Dorozhkin S.V. Bioceramics of calcium orthophosphates, Biomaterials, 2010, vol. 31, issue 7, pp. 1465-1485. DOI: 10.1016/j.biomaterials.2009.11.050.
12. Dee P., You H.Y., Teoh S.-H., Le Ferrand H. Bioinspired approaches to toughen calcium phosphate-based ceramics for bone repair, Journal of the Mechanical Behavior of Biomedical Materials, 2020, vol. 112, art. id 104078, 15 p. DOI: 10.1016/j.jmbbm.2020.104078.
13. Kim H.M., Himeno T., Kawashita M. et al. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment, Journal of the Royal Society Interface, 2004, vol. 1, issue 1, pp. 17–22. DOI: 10.1098/rsif.2004.0003.
14. Ohtsuki C., Kushitani H., Kokubo T. et al. Apatite formation on the surface of Ceravital-type glass-ceramic in the body, Journal of Biomedical Materials Research, 1991, vol. 25, issue 11, pp. 1363-1370. DOI: 10.1002/jbm.820251105.
15. Krut’ko V.K., Musskaya O.N., Kulak A.I., Safronova T.V. Vliyanie fazy trikal'tsiifosfata na prochnost' gidroksiapatitovoi penokeramiki v protsesse termicheskogo otzhiga [Influence of tricalcium phosphate phase on the strength of hydroxyapatite foam ceramics in the thermal annealing process, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 264-270. DOI: 10.26456/pcascnn/2017.9.264. (In Russian).
16. Krut’ko V.K., Musskaya O.N., Kulak A.I., Safronova T.V. Termicheskaya ehvolyutsiya kal'tsiifosfatnoi penokeramiki, poluchennoi na osnove gidroksiapatita i monokal'tsiifosfata monogidrata [Thermal evolution of calcium phosphate foam ceramics obtained on the basis of hydroxyapatite and monocalcium phosphate of monohydrate], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 615-623. DOI: 10.26456/pcascnn/2019.11.615. (In Russian).
17. Krut’ko V.K., Maslova L.Yu., Musskaya O.N. et al. Calcium phosphate ceramic foam obtained by firing a hydroxyapatite–monocalcium phosphate monohydrate powder mixture, Glass and Ceramics, 2022, vol. 78, issue 11, pp. 476-480. DOI: 10.1007/s10717-022-00435-y.
18. Krut’ko V.K., Musskaya O.N., Kulak A.I. et al. Calcium phosphate foam ceramic based on hydroxyapatite–brushite powder mixture, Glass and Ceramics, 2019, vol. 76, issue 3, pp. 38-44. DOI: 10.1007/s10717-019-00145-y.
19. Krut'ko V.K., Kulak A.I., Lesnikovich L.A. et al. Influence of the dehydration procedure on the physicochemical properties of nanocrystalline hydroxylapatite xerogel, Russian Journal of General Chemistry, 2007, vol. 77, issue 3, pp. 336-342. DOI: 10.1134/S1070363207030036.
20. Takadama H., Hashimoto M., Mizuno M., Kokubo T. Round-robin test of SBF for in vitro measurement of apatite-forming ability of synthetic materials, Phosphorus Research Bulletin, 2004, vol. 17, pp. 119-125. DOI: 10.3363/prb1992.17.0_119.
21. Barrere F., van Blitterswijk C.A., de Groot K., Layrolle P. Nucleation of biomimetic Ca-P coatings on ti6A14V from a SBFx5 solution: influence of magnesium, Biomaterials, 2002, vol. 23, issue 10, pp. 2211-2220. DOI: 10.1016/s0142-9612(01)00354-4.
22. Krut’ko V.K., Musskaya O.N., Kulak A.I., Safronova T.V. Kal’tsiifosfatnaya penokeramika s reguliruemoi bioaktivnost’yu [Calcium phosphate foam ceramics with regulated bioactivity], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 374-382. DOI: 10.26456/pcascnn/2018.10.374. (In Russian).
23. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: https://www.icdd.com/pdf-2 (accessed 15.06.2022).
24. Krut’ko V.K., Maslova L.Yu., Musskaya O.N. et al. Bioaktivnaya kal’tsiifosfatnaya penokeramika, modifitsirovannaya biomimeticheskim apatitom [Bioactive calcium phosphate foam ceramics modified by biomimetic apatite], Izvestiya Natsional’noi akademii nauk Belarusi, Seriya khimicheskikh nauk [Proceedings of the National Academy of Sciences of Belarus, Chemical Series], 2022, vol. 58, issue 2, pp. 158-168. DOI: 10.29235/1561-8331-2022-58-2-158-168. (In Russian).
25. Krut’ko V.K., Maslova L.Yu., Musskaya O.N. et al. Modifitsirovanie kal’tsiifosfatnoi penokeramiki bioapatitom v srede SBF [Modification of calcium phosphate foam ceramics with bioapatite in SBF solution], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 870-880. DOI: 10.26456/pcascnn/2021.13.870. (In Russian).
26. Glazov I.E., Krut’ko V.K., Musskaya O.N., Kulak A.I. Calcium phosphate apatites: wet formation, thermal transformations, terminology, and identification, Russian Journal of Inorganic Chemistry, 2022, vol. 67, issue 2, pp. 173-182. DOI: 10.1134/S0036023622020048.

⇐ Prevoius journal article | Content | Next journal article ⇒