Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Development of composite mixtures based on hydroxyapatite and biogenic elements for the formation of bioactive coatings

E.A. Bogdanova, V.M. Skachkov, K.V. Nefedova

Institute of Solid State Chemistry of the Ural Branch of RAS

DOI: 10.26456/pcascnn/2022.14.771

Original article

Abstract: The hardened composite material with a porous structure was obtained by mechanochemical synthesis of nanostructured hydroxyapatite synthesized by precipitation from an aqueous solution with reinforcing additives of zirconium dioxide and silicic acid. Food gelatin is used as a binder. The influence of the phase composition on the physico-chemical properties of coatings (adhesive strength, microhardness, specific surface area, microstructure) is estimated. It has been established that the use of composite material together with gelatin as a part of a bioactive coating makes it possible to increase its hardness and adhesive strength. A patent application has been filed for the developed bioactive coatings based on nanoscale hydroxyapatite and biogenic elements with a binding agent. The composition of the dry mixture based on hydroxyapatite has been developed, which ensures a long shelf life without negative consequences and creates simple transportation conditions. Dilution of the dry mixture with distilled water gives a suspension that is convenient to use for coating implants of any configuration.

Keywords: hydroxyapatite, composite materials, biogenic elements, gelatin, collagen, bioactive coatings, adhesion

  • Ekaterina A. Bogdanova – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes, Institute of Solid State Chemistry of the Ural Branch of RAS
  • Vladimir M. Skachkov – Ph. D., Senior Researcher, Laboratory of Heterogeneous Processes, Institute of Solid State Chemistry of the Ural Branch of RAS
  • Ksenia V. Nefedova – Researcher, Laboratory of promising and functional materials for CCS, Institute of Solid State Chemistry of the Ural Branch of RAS

Reference:

Bogdanova, E.A. Development of composite mixtures based on hydroxyapatite and biogenic elements for the formation of bioactive coatings / E.A. Bogdanova, V.M. Skachkov, K.V. Nefedova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 771-781. DOI: 10.26456/pcascnn/2022.14.771. (In Russian).

Full article (in Russian): download PDF file

References:

1. Cao H., Kuboyama N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue, Bone, 2010, vol. 46, issue 2, pp. 386-395. DOI: 10.1016/j.bone.2009.09.031.
2. Pomogailo A.D., Dzhardimalieva G.I. Metallopolimernye gibridnye nanokompozity [Metal-polymer hybrid nanocomposites]. Moscow, Nauka Publ., 2015, 494 p. (In Russian).
3. Ethirajan A., Ziener U., Landfester K. Surface-Functionalized Polymeric Nanoparticles As Templates For Biomimetic Mineralization Of Hydroxyapatite, Chemistry of Materials, 2009, vol. 21, issue 11, pp. 2218-2225. DOI: 10.1021/cm9001724.
4. Barinov S.M., Komlev V.S. Biokeramika na osnove fosfatov kal'tsiya [Calcium phosphate bioceramics]. Moscow, Nauka Publ., 2006, 204 p. (In Russian).
5. Tadic D., Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials, 2004, vol. 25, issue 6, pp. 987-994. DOI: 10.1016/S0142-9612(03)00621-5.
6. Musskaya O.N., Krut’ko V.K., Kulak A.I. i dr. Trekhmernye modeli na osnove polilaktida i gidroksiapatita [Three-dimensional models based on polylactide and hydroxyapatite], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 326-335. DOI: 10.26456/pcascnn/2019.11.326. (In Russian).
7. Musskaya O.N., Krut’ko V.K., Kulak A.I. Sintez fosfatov magniya v polimernoj matritse [Synthesis of magnesium phosphates in a polymeric matrix], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 860-867. DOI: 10.26456/pcascnn/2020.12.860. (In Russian).
8. Pottathara Y.B., Vuherer T., Maver U., Kokol V. Morphological, mechanical, and in-vitro bioactivity of gelatine/collagen/hydroxyapatite based scaffolds prepared by unidirectional freeze-casting, Polymer Testing, 2021, vol. 102, art. no. 107308, 13 p. DOI: 10.1016/j.polymertesting.2021.107308.
9. Zhang Y., Zuo K., Zeng Yu-P. Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics, Ceramics International, 2009, vol. 35, issue 6, pp. 2151-2154. DOI: 10.1016/j.ceramint.2008.11.022.
10. Vlierberghe S.V., Dubruel P., Schacht E Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review, Biomacromolecules, 2011, vol. 12, issue 5, pp. 1387-1408. DOI: 10.1021/bm200083n.
11. Sarker A., Linh N.T.B., Jung H. Il, Seo H.S., Lee B.T. Fabrication of recombinant human bone morphogenetic protein-2 coated porous biphasic calcium phosphate-sodium carboxymethylcellulose-gelatin scaffold and its In vitro evaluation, Macromolecular Research, 2014, vol. 22, issue12, pp. 1297-1305. DOI: 10.1007/s13233-014-2185-8.
12. Chen J., Chang F. Preparation and characterization of hydroxyapatite/gelatin composite membranes for immunoisolation, Applied Surface Science, 2012, vol. 262, pp. 176-183. DOI: 10.1016/j.apsusc.2012.04.097.
13. Deng L., Li Y., Zhang A., Zhang H. Characterization and physical properties of electrospun gelatin nanofibrous films by incorporation of nano-hydroxyapatite, Food Hydrocolloid, 2020, vol. 103, art. no. 105640, 9 p. DOI: 10.1016/j.foodhyd.2019.105640.
14. Kim H., Knowles J., Kim H. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release, Journal of Biomedical Materials Research Part B: Applied Biomaterial, 2005, vol. 74, issue 2, pp. 686-698. DOI: 10.1002/jbm.b.30236.
15. Shu C., Xianzhu Y., Zhangyin X. et al. Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method, Ceramics International, 2007, vol. 33, issue 2, pp. 193-196. DOI: 10.1016/j.ceramint.2005.09.001.
16. Bera T., Vivek A.N., Saraf S.K., Ramachandrarao P. Characterization of biomimetically synthesized Hap–Gel nanocomposites as bone substitute, Biomedical Materials, 2008, vol. 3, no. 2, art. no 025001, 12 p. DOI: 10.1088/1748-6041/3/2/025001.
17. Bogdanova E.A., Skachkov V.М. Perspektivnye kompozicionnye materialy naosnove nanorazmernogo apatita so svyazuyushchim agentom – zhelatin [Promising composite materials based on nanoscale apatite with gelatin as a binding agent], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 664-671. DOI: 10.26456/pcascnn/2021.13.664. (In Russian).
18. Bogdanova E.A., Skachkov V.М., Giniyatullin I.M., Pereverzev D.I., Nefedova K.V. Poluchenie biokomozitov na osnove nanorazmernogo gidroksiapatita s oksidami cirkoniya i kremniya [Preparation of biocomposites based on nanoscale hydroxyapatite with zirconium and silicon oxides], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 655-663. DOI: 10.26456/pcascnn/2021.13.655. (In Russian).
19. Jin H.H., Lee C.H., Lee W.K. et al. In-situ formation of the hydroxyapatite/chitosan-alginate composite scaffolds, Materials Letters, 2008, vol. 62, issue 10-11, pp. 1630-1633. DOI: 10.1016/j.matlet.2007.09.043.
20. Neumann M., Epple M. Composites of calcium phosphate and polymers as bone substitution materials, European Journal of Trauma, 2006, vol. 32, issue 2, pp. 125-131. DOI: 10.1007/s00068-006-6044-y.
21. Tsuruga E., Takita H., Itoh H., Wakisaka Y., Kuboki Y. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis, The Journal of Biochemistry, 1997, vol. 121, issue 2, pp. 317-324. DOI: 10.1093/oxfordjournals.jbchem.a021589.
22. Eggli P.S., Moller W., Schenk R.K. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: a comparative histomorphometric and histologic study of bony ingrowth and implant substitution, Clinical Orthopaedics and Related Research, 1988, vol. 232, pp. 127-138. DOI: 10.1097/00003086-198807000-00017.
23. Daculsi G., Passuti N. Effect of the macroporosity for osseous substitution of calcium phosphate ceramics, Biomaterials, 1990, vol. 11, pp. 86-87.
24. Lu J.X., Flautre B., Anselme K., Hardouin P. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo, Journal of Materials Science: Materials in Medicine, 1999, vol. 10, issue 2, pp. 111-120. DOI: 10.1023/A:1008973120918.
25. Bogdanova E.A., Skachkov V.М., Medyankina I.S. et al. Formation of nanodimensional structures in precipitated hydroxyapatite by fluorine substitution, SN Applied Sciences, 2020, vol. 2, issue 9, art. no. 1565, 7 p. DOI: 10.1007/s42452-020-03388-5.
26. Sabirzyanov N.A., Bogdanova E.A., Khonina T.G. Sposob polucheniya suspenzii gidroksiapatita [A method of obtaining a suspension of hydroxyapatite]. Patent RF, no. 2406693, 2010. (In Russian).
27. Sabirzyanov N.A., Bogdanova E.A., Skachkov V.M. Sposob polucheniya suspenzii apatita [Method of preparing apatite suspension]. Patent RF, no. 2652193, 2018. (In Russian).
28. Bogdanova E.A., Pereverzev D.I., Giniyatullin I.M., Skachkov V.M. Kompozicionnyj material dlya kostnyh implantatov i sposob ego polucheniya [Hydroxyapatite-based composite material for bone implants and method for its preparation]. Patent RF, no. 2771382, 2022. (In Russian).
29. Zhelatin. Tekhnicheskie usloviya: GOST 11293-89 [Gelatin. Specifications: State Standard 11293-89]. Moscow, IPK Standartov Publ., 1989, 24 p. (in Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒