Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


The effect of the mixing rate of the reaction mixture on the dispersed characteristics of the nanoemulsion of fat-soluble vitamin E (alpha-tocopherol acetate)

A.V. Blinov, K.S. Slyadneva, A.A. Gvozdenko, A.B. Golik, M.A. Taravanov, E.D. Nazaretova

North Caucasus Federal University

DOI: 10.26456/pcascnn/2022.14.754

Original article

Abstract: The article presents the results of a study of the effect of the mixing rate on the dispersed characteristics of nanoemulsions of the fat-soluble vitamin E (alpha-tocopherol acetate). The mixing speed was varied in the range of 3000-22500 rpm. The average hydrodynamic radius of the micelles of fat-soluble vitamin E was considered as an output parameter, which was determined by the method of the dynamic light scattering. It was found that as a result of synthesis, micelles of the fat-soluble vitamin E emulsions are formed, having a monomodal size distribution. The smallest average hydrodynamic radius of the particles was 22 nm. It was found that an increase in the mixing speed from 3000 to 22500 rpm causes a decrease in the average hydrodynamic radius of micelles. The greatest changes are observed at τ = 30 s: a decrease in the average hydrodynamic radius of micelles Rm occurs by 3,3 times (from 210 to 63 nm). It is important to note that an increase in other synthesis parameters also leads to a decrease in the value of the average hydrodynamic radius of micelles of the vitamin E nanoemulsions. By v = 22500 rpm an increase in the mixing time τ from 30 s to 270 s leads to a decrease in Rm by 19 nm (from 63 to 44 nm).

Keywords: fat-soluble vitamin E, nanoemulsion, hydrodynamic radius, mixing speed

  • Andrey V. Blinov – Ph. D., Assistant professor, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Kristina S. Slyadneva – 3rd year student, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Alexey A. Gvozdenko – Assistant, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Alexey B. Golik – Assistant, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Maxim A. Taravanov – 2nd year student, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Ekaterina D. Nazaretova – student, Specialized Educational and Scientific Center, North Caucasus Federal University

Reference:

Blinov, A.V. The effect of the mixing rate of the reaction mixture on the dispersed characteristics of the nanoemulsion of fat-soluble vitamin E (alpha-tocopherol acetate) / A.V. Blinov, K.S. Slyadneva, A.A. Gvozdenko, A.B. Golik, M.A. Taravanov, E.D. Nazaretova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 754-762. DOI: 10.26456/pcascnn/2022.14.754. (In Russian).

Full article (in Russian): download PDF file

References:

1. McClements D.J., Jafari S.M. General aspects of nanoemulsions and their formulation, Nanoemulsions Formulation, Applications, and Characterization, ed. by S.M. Jafari, D.J. McClements. Academic Press, 2018, chapter 1, рр. 3-20. DOI: 10.1016/B978-0-12-811838-2.00001-1.
2. Gupta A., Eral H.B., Hatton T.A., Doyle P.S. Nanoemulsions: formation, properties and applications, Soft Matter, 2016, vol. 12, issue 11, pp. 2826-2841. DOI: 10.1039/C5SM02958A.
3. Ho T.M., Abik F., Mikkonen K.S. An overview of nanoemulsion characterization via atomic force microscopy, Critical Reviews in Food Science and Nutrition, 2021, vol. 62, issue 18, pp. 4908-4928. DOI: 10.1080/10408398.2021.1879727.
4. Gutnova Т.S., Kompantsev D.V., Gvozdenko A.A., Kramarenko V.N., Blinov A.V. Vitamin D nanocapsulation, Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya [The Journal ChemChemTech], 2021, vol. 64, issue 5, pp. 98-105. DOI: 10.6060/ivkkt.20216405.6399. (in Russian).
5. Ozogul Y., Karsli G.T., Durmuş M., Yazgan H., Oztop H.M., McClements D.J., Ozogul F. Recent developments in industrial applications of nanoemulsions, Advances in Colloid and Interface Science, 2022, vol. 304, art no. 102685, 22 p. DOI: 10.1016/j.cis.2022.102685.
6. Ashaolu T.J. Nanoemulsions for health, food, and cosmetics: a review, Environmental Chemistry Letters, 2021, vol. 19, issue 4, pp. 3381-3395. DOI: 10.1007/s10311-021-01216-9.
7. Saifullah M., Ahsan A., Shishir M.R.I. Production, stability and application of micro-and nanoemulsion in food production and the food processing industry, Emulsions Nanotechnology in the Agri-Food Industry, ed. by A.M. Grumezescu. Academic Press, 2016, vol. 3, chapter 12, pp. 405-442. DOI: 10.1016/B978-0-12-804306-6.00012-X.
8. Esson M.M., Mecozzi S. Preparation, characterization, and formulation optimization of ionic-liquid-in-water nanoemulsions toward systemic delivery of amphotericin B, Molecular Pharmaceutics, 2020, vol. 17, issue 6, pp. 2221-2226. DOI: 10.1021/acs.molpharmaceut.9b00809.
9. Stefanek A., Łęczycka-Wilk K., Czarnocka-Śniadała S. et al. Fluorosurfactants for medical nanoemulsions, their surface-active and biological properties, Colloids and Surfaces B: Biointerfaces, 2021, vol. 200, art. no 111603, 12 p. DOI: 10.1016/j.colsurfb.2021.111603.
10. Wilson R.J., Li Y., Yang G., Zhao C.X. Nanoemulsions for drug delivery, Particuology, 2021, vol. 64, pp. 85-97. DOI: 10.1016/j.partic.2021.05.009.
11. Rajpoot P., Pathak K., Bali V. Therapeutic applications of nanoemulsion based drug delivery systems: a review of patents in last two decades, Recent patents on drug delivery & formulation, 2011, vol. 5, no. 2, pp. 163-172. DOI: 10.2174/187221111795471427.
12. Trujillo‐Cayado L.A., Santos J., Calero N., Alfaro‐Rodríguez M.C., Muñoz J. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil, Journal of the Science of Food and Agriculture, 2020, vol. 100, issue 4, pp. 1671-1677. DOI: 10.1002/jsfa.10181.
13. Koroleva M.Y., Yurtov E.V. Ostwald ripening in macro-and nanoemulsions, Russian Chemical Reviews, 2021, vol. 90, no. 3, pp. 293-323. DOI: 10.1070/RCR4962.
14. Rao J., McClements D.J. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement, Journal of Agricultural and Food Chemistry, 2010, vol. 58, issue 11, pp. 7059-7066. DOI: 10.1021/jf100990r.
15. Ozturk B., Argin S., Ozilgen M., McClements D.J. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural surfactants: Quillaja saponin and lecithin, Journal of Food Engineering, 2014, vol. 142, pp. 57-63. DOI: 10.1016/j.jfoodeng.2014.06.015.
16. de Oca-Ávalos J.M.M., Candal R.J., Herrera M.L. Nanoemulsions: stability and physical properties, Current Opinion in Food Science, 2017, vol. 16, pp. 1-6. DOI: 10.1016/j.cofs.2017.06.003.
17. Fuentes K., Matamala C., Martínez N., Zúñiga R.N., Troncoso E. Comparative study of physicochemical properties of Nanoemulsions fabricated with natural and synthetic surfactants, Processes, 2021, vol. 9, issue 11, art. no. 2002, 14 p. DOI: 10.3390/pr9112002.
18. Poteshnova M.V., Zadymova N.M., Grigoriev E.V. Svojstva pryamykh mikroemul'sij v trekhkomponentnoj sisteme Tvin-80–toluol–voda [Properties of direct microemulsions in the three-component Twin-80–toluene–water system], Bulletin of the Moscow University. Series 2. Chemistry, 2004, vol. 45, issue 3, pp. 195-203. (in Russian).
19. Çınar K. A review on nanoemulsions: preparation methods and stability, Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 2017, vol. 18, issue 1, pp. 73-83.
20. Solans C., Solé I. Nano-emulsions: formation by low-energy methods, Current Opinion in Colloid & Interface Science, 2012, vol. 17, issue 5, pp. 246-254. DOI: 10.1016/j.cocis.2012.07.003.
21. Gutiérrez J.M., González C., Maestro A. et al. Nano-emulsions: new applications and optimization of their preparation, Current Opinion in Colloid & Interface Science, 2008, vol. 13, issue 4, pp. 245-251. DOI: 10.1016/j.cocis.2008.01.005.
22. Forgiarini A., Esquena J., Gonzalez C., Solans C. Formation of nano-emulsions by low-energy emulsification methods at constant temperature, Langmuir, 2001, vol. 17, issue 7, pp. 2076-2083. DOI: 10.1021/la001362n.
23. Blinov A.V., Nagdalyan A.A., Gvozdenko A.A. et al. Investigation of the effect of synthesis parameters on the average hydrodynamic radius of vitamin E micelles (alpha-tocopherol acetate), Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya [The Journal ChemChemTech], 2022, vol. 65, issue 7, pp. 45-53. DOI: 10.6060/ivkkt.20226507.6571. (in Russian)
24. Shanmugapriya K., Kim H., Saravana P.S., Chun B.S., Kang H.W. Astaxanthin-alpha tocopherol nanoemulsion formulation by emulsification methods: Investigation on anticancer, wound healing, and antibacterial effects, Colloids and Surfaces B: Biointerfaces, 2018, vol. 172, pp. 170-179. DOI: 10.1016/j.colsurfb.2018.08.042.
25. Kuo F., Subramanian B., Kotyla T., Wilson T.A., Yoganathan S., Nicolosi R. J. Nanoemulsions of an anti- oxidant synergy formulation containing gamma tocopherol have enhanced bioavailability and anti-inflammatory properties, International Journal of Pharmaceutics, 2008, vol. 363, issue 1-2, pp. 206-213. DOI: 10.1016/j.ijpharm.2008.07.022.
26. Shanmugapriya K., Kim H., Kang H.W. In vitro antitumor potential of astaxanthin nanoemulsion against cancer cells via mitochondrial mediated apoptosis, International Journal of Pharmaceutics, 2019, vol. 560, pp. 334-346. DOI: 10.1016/j.ijpharm.2019.02.015.
27. Deng L.L., Taxipalati M., Que F., Zhang H. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles, Scientific reports, 2016, vol. 6, issue 1, art. no. 38160, 8 p. DOI: 10.1038/srep38160.
28. Joseph D., Lee H., Huh Y.S., Han Y.K. Cylindrical core-shell tween 80 micelle templated green synthesis of gold-silver hollow cubic nanostructures as efficient nanocatalysts, Materials & Design, 2018, vol. 160, pp. 169-178. DOI: 10.1016/j.matdes.2018.09.003.
29. Kravtsov A.A., Chikulina I.S., Vakalov D.S. et al. Issledovanie lyuminestsentsii YAG: Ce, dopirovannogo nanochastitsami serebra [Luminescence of YAG:Ce doped with silver nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 220-227. DOI: 10.26456/pcascnn/2021.13.220. (in Russian).
30. Yasnaya M.A., Blinov A.V., Blinova A.A. et al. Opredelenie optimal'nykh rezhimov izmereniya razmera kolloidnykh chastits metodami fotonno-korrelyatsionnoj i akusticheskoj spektroskopii [Determination of optimal modes for measuring the size of colloidal particles by photon-correlation spectroscopy and acoustic spectroscopy], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 232-242. DOI: 10.26456/pcascnn/2020.12.232. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒