Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Analysis of investigations of the lithium niobate charge LiNbO3:Mg synthesized on the basis of Nb2O5:Mg precursors of different genesis

S.M. Masloboeva1,2

1 I.V. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences»
2 Apatity Branch of the Murmansk Arctic State University

DOI: 10.26456/pcascnn/2022.14.662

Original article

Abstract: An analysis was made of studies on the preparation of a charge of lithium niobate used for growing crystals LiNbO3:Mg by the Czochralski method. The charge was synthesized on the basis of precursors Nb2O5:Mg of different genesis. The results of studies of the mixture by X-ray phase analysis, atomic emission spectrographic analysis, gas chromatography-mass spectrometry, mass spectrometry with inductively coupled plasma and laser ablation are presented. It has been established that in the studied systems, a uniform distribution of magnesium impurities in the charge is observed, which leads to the production of crystals of high optical quality with impurity distribution coefficients above unity. It has been shown that the presence of organic inclusions makes it possible to introduce more magnesium into the growing crystal. The results are of great importance in the technology of growing single crystals of lithium niobate when choosing a method for the synthesis of a charge in order to use the crystals obtained from it in specific areas of technology.

Keywords: niobium pentoxide, genesis, doping with magnesium, synthesis of lithium niobate charge, impurity distribution, single crystal, optical quality

  • Sofia M. Masloboeva – Ph. D., Assistant professor, Senior Researcher of Materials of Electronic Engineering Laboratory, I.V. Tananaev Institute of Chemistry – Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Assistant professor of the Department of General Disciplines Apatity Branch of the Murmansk Arctic State University

Reference:

Masloboeva, S.M. Analysis of investigations of the lithium niobate charge LiNbO3:Mg synthesized on the basis of Nb2O5:Mg precursors of different genesis / S.M. Masloboeva // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 662-670. DOI: 10.26456/pcascnn/2022.14.662. (In Russian).

Full article (in Russian): download PDF file

References:

1. Kuz'minov Yu.S. Elektroopticheskij i nelinejnoopticheskij kristall niobata litiya [Electro-optical and nonlinear-optical crystal of lithium niobate]. Moscow, Nauka Publ., 1987, 264 p. (In Russian).
2. Lines M.E., Glass A.M. Principles and applications of ferroelectrics and related materials. Oxford, Clarendon Press., 1977, 680 р. DOI:10.1093/acprof:oso/9780198507789.001.0001.
3. Volk T., Wohlecke M. Lithium niobate. Defects, photorefraction and ferroelectric switching. Berlin, Springer, 2008, 250 p. DOI: 10.1007/978-3-540-70766-0.
4. Sidorov N.V., Volk T.P., Mavrin B.N., Kalinnikov V.T. Niobat litiya: defekty, fotorefraktsiya, kolebatel'nyi spektr, polyaritony [Lithium niobate: defects, photorefraction, vibrational spectrum, polaritons]. Moscow, Nauka Publ., 2003, 255 p. (In Russian).
5. Kokhanchik L.S., Emelin E.V., Palatnikov M.N. Domain formation in heavily doped LiNbO3:Mg crystals exposed to an electron beam, Inorganic Materials. 2015, vol. 51, issue 6, pp. 607-612. DOI: 10.1134/S0020168515060084.
6. Shur V.Ya., Akhmatkhanov A.R., Baturin I.S. Micro- and nano-domain engineering in lithium niobate, Applied Physics Reviews, 2015, vol. 2, issue 4, pp. 040604-1-040604-22. DOI: 10.1063/1.4928591.
7. Kemlin V., Jegouso D., Debray J. et al. Dual-wavelength source from 5% MgO :PPLN cylinders for the characterization of nonlinear infrared crystals, Optics Express, 2013, vol. 21, issue 23, pp. 28886-28891. DOI: 10.1364/OE.21.028886.
8. Murray R.T., Runcorn T.H., Guha S., Taylor J.R. High average power parametric wavelength conversion at 3,31–3,48 μm in MgO:PPLN, Optics express, 2017, vol. 25, issue 6, pp. 6421-6430. DOI: 10.1364/OE.25.006421.
9. Masloboeva S.M., Palatnikov M.N., Arutyunyan L.G., Ivanenko D.V. Metody polucheniya legirovannoj shikhty niobata litiya dlya vyrashchivaniya monokristallov [Methods for producing doped lithium niobate charge for growth of single crystals], Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) [Bulletin of the Saint Petersburg State Institute of Technology (Technical University)], 2017, issue 38 (64), pp. 34-43. (In Russian).
10. Masloboeva S.M., Arutyunyan L.G. Poluchenie vysokochistogo oksida niobiya (V) pri razlozhenii ortoniobata litiya vo ftoridno-sernokislotnoj srede [Obtaining high-purity niobium (V) oxide by decomposition of lithium orthoniobate in a fluoride-sulfuric acid medium], Vestnik Murmanskogo gosudarstvennogo tehnicheskogo universiteta [Bulletin of the Murmansk State Technical University], 2010, vol. 13, issue 4/2, pp. 907-912. (In Russian).
11. Palatnikov M.N., Masloboeva S.M., Biryukova I.V. et al. Effect of the method used to prepare solid precursors Nb2O5:Mg on the characteristics of LiNbO3:Mg crystals produced on their basis, Russian Journal of Inorganic Chemistry, 2014, vol. 59, issue 3, pp. 178-182. DOI: 10.1134/S0036023614030176.
12. Masloboeva S.M., Sidorov N.V., Palatnikov M.N., Arutyunyan L.G., Chufyrev P.G. Niobium (V) oxide doped with Mg2+ and Gd3+ cations: synthesis and structural studies, Russian Journal of Inorganic Chemistry, 2011, vol. 56, issue 8, pp. 1194-1198. DOI: 10.1134/S0036023611080183.
13. Palatnikov M.N., Sidorov N.V., Kalinnikov V.T. Segnetoelektricheskie tverdye rastvory na osnove oksidnykh soedinenij niobiya i tantala [Ferroelectric solid solutions based on oxide compounds of niobium and tantalum], St. Petersburg, Nauka Publ., 2002, 304 p. (in Russian).
14. Masloboeva S.M., Kadyrova G.I., Zalkind O.A., Kuznetsov V.Ya. Issledovanie fazovogo sostava pentaoksidov niobiya, dopirovannykh kationami Mg2+ i Gd3+ [Investigation of the phase composition of niobium pentoxides doped with Mg2+ and Gd3+ cations], Vestnik Murmanskogo gosudarstvennogo tehnicheskogo universiteta [Bulletin of the Murmansk State Technical University], 2013, vol. 16, issue 1, pp. 123-126. (In Russian).
15. Horowitz H.S. Low-temperature synthesis route to MgNb2O6, Journal of the American Ceramic Society, 1988, vol. 71, issue 5, pp. C-250-C-251. DOI: 10.1111/j.1151-2916.1988.tb05070.x.
16. Hsu R., Maslen E.N., du Boulay D., Ishizawa N. Synchrotron x-ray studies of LiNbO3 and LiTaO3 // Acta Acta Crystallographica Section B. Structural Science, Crystal Engineering and Materials, 1997, vol. 53, pp. 420-428. DOI: 10.1107/S010876819600777X.
17. Sidorov N.V., Teplyakova N.A., Palatnikov M.N. Vliyanie sposoba legirovaniya na odnorodnost' i opticheskie svojstva kristallov LiNbO3:Mg [Influence of the method of doping on uniformity and optical properties of LiNbO3:Mg crystals], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 383-391. DOI: 10.26456/pcascnn/2021.13.383. (In Russian).
18. Nikonorov N.V., Petrov V.M. Holographic optical components based on photorefractive crystals and glasses: comparative analysis and development prospects, Optics and Spectroscopy, 2021, vol. 129, issue 5, pp. 530-537. DOI: 10.1134/S0030400X21040172.

⇐ Prevoius journal article | Content | Next journal article ⇒