Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Mechanisms of laser impact on ultra-fine mineral medium

G.G. Kapustinа1, N.A. Leonenko2

1 Pacific State University
2 Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences – A separate subdivision of the Khabarovsk Federal Research Center of the Far Eastern Branch of the Russian Academy of Sciences

DOI: 10.26456/pcascnn/2022.14.621

Original article

Abstract: The development of modern technologies for the complex extraction of valuable components from refractory ores and technogenic deposits is possible on the basis of the latest achievements of fundamental sciences, a combination of physicochemical, enrichment and metallurgical processes. The paper describes the results on the impact of laser radiation on mineral samples with ultrafine «non-recoverable» gold from silt ponds-settlers of alluvial deposits in the Far East. The object of research is the impact of a source of continuous laser radiation on samples of minerals, objects of alluvial deposits containing submetric and nanosized forms of gold that are not recoverable by traditional gravity methods. The purpose of this work was to study the processes of interaction of laser radiation with dispersed mineral media containing ultrafine gold and to determine the conditions for agglomeration of ultrafine gold. Electron microscopic images of the samples were obtained using a LEO EVO 40HV microscope (Carl Zeiss, Germany) equipped with an INCA-ENERGY energy-dispersive analyzer. A model is proposed that describes the processes at the boundary of heterogeneous phases. An analysis of the discovered effect of gold agglomeration made it possible to formulate technical solutions that were reflected in patents for inventions. The discovered effect of gold agglomeration made it possible to find technical solutions in the form of patents for inventions.

Keywords: laser-induced, ultrafine, colloid-ion, gold, gold-bearing mineral products, structural ordering, scanning electron microscopy

  • Galina G. Kapustinа – Senior Lecturer, Physics Department, Pacific State University
  • Nina A. Leonenko – Ph. D., Leading Researcher, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences – A separate subdivision of the Khabarovsk Federal Research Center of the Far Eastern Branch of the Russian Academy of Sciences

Reference:

Kapustinа, G.G. Mechanisms of laser impact on ultra-fine mineral medium / G.G. Kapustinа, N.A. Leonenko // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 621-631. DOI: 10.26456/pcascnn/2022.14.621. (In Russian).

Full article (in Russian): download PDF file

References:

1. Bunin I.Z., Chanturiya V.A., Ryazantseva M.V. et al. Changes in the surface morphology, microhardness, and physicochemical properties of natural minerals under the influence of a dielectric barrier discharge, Bulletin of the Russian Academy of Sciences: Physics, 2020, vol. 84, issue 9, pp. 1161-1164. DOI: 10.3103/S1062873820090099.
2. Bakharev S.A. Akusticheskaya tekhnologiya dopolnitel'nogo izvlecheniya metalla, v tom chisle iz peskov tekhnogennykh rossypnykh mestorozhdenij [Acoustic technology for additional extraction of metal, including from the sands of technogenic alluvial deposits], Gornyj informatsionno-analiticheskij byulleten' [Mining Information and Analytical Bulletin], 2005, no. 9, pp. 333-338. (In Russian).
3. Kurets V.I., Usov A.F., Tsukerman V.A. Elektroimpul'snaya dezintegratsiya materialov [Electropulse disintegration of materials]. Apatity, Kola Scientific Center of the Russian Academy of Sciences Publ., 2002, 324 p. (In Russian).
4. Petrov V.M. Novye primeneniya radioelektroniki: Razuprochnenie gornykh porod moshchnym elektromagnitnym polem SVCh [New applications of radio electronics: Rock softening by a powerful microwave electromagnetic field], «INFORMOST» – «Radioelektronika i Telekommunikatsii» [«INFORMOST»–«Radioelectronics and Telecommunications»], 2002, no. 3 (21), pp. 49-55. (In Russian).
5. Usov A.F., Tsukerman V.A. Nauchno-innovatsionnyj potentsial elektroimpul'snogo sposoba dezintegratsii dlya pererabotki mineral'nogo syr'ya [Scientific and innovative potential of the electropulse method of disintegration for the processing of mineral raw materials], Gornyj informatsionno-analiticheskij byulleten' [Mining Information and Analytical Bulletin], 2007, no. 8, pp. 243-248. (In Russian).
6. Chanturiya V.A., Vigdergauz V.E. Innovatsionnye tekhnologii pererabotki tekhnogennogo mineral'nogo syr' [Innovative technologies for processing of man-caused mineral raw materials], Gornyj zhurnal [Mining Journal], 2008, no. 6, pp. 71-74. (In Russian).
7. Chanturiya V.A., Bunin I.Zh., Kovalev A.T. Modeli protsessov dezintegratsii i vskrytiya mineral'nykh sred pri vysokoimpul'snykh (pulsed power) vozdejstviyakh [Models of processes of disintegration and opening of mineral environments under high-pulse (pulsed power) impacts], Gornyj informatsionno-analiticheskij byulleten' [Mining Information and Analytical Bulletin], 2005, no. 9, pp. 326-332. (In Russian).
8. Chanturiya V.A., Bunin I.Zh., Kovalev A.T. O mekhanizmakh dissipatsii energii moshchnykh nanosekundnykh impul'sov v prirodnykh mineralakh-poluprovodnikakh (magnitnyj pinch-effekt) [On the mechanisms of energy dissipation of high-power nanosecond pulses in natural semiconductor minerals (magnetic pinch effect)], Gornyj informatsionno-analiticheskij byulleten' [Mining Information and Analytical Bulletin], 2006, no. 9, pp. 367-375. (In Russian).
9. Bulgakov L. V., Bulgakova N.M., Burakov I.M. et al. Sintez nanorazmernykh materialov pri vozdejstvii moshchnykh potokov energii na veshchestvo [Synthesis of nanoscale materials under the influence of powerful energy flows on matter]. Novosibirsk, Institute of Thermal Physics SB RAS Publ., 2009, 462 p. (in Russian).
10. Antonov A.S., Sdobnyakov N.Yu., Ivanov D.V. et al. Issledovanie fraktal'nykh svojstv nanorazmernykh plenok zolota, serebra i medi: atomno-silovaya i tunnel'naya mikroskopiya [Investigation of fractal properties of nanosized gold, silver and copper films: atomic force and tunnelling microscopy ], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2017, vol. 19, no. 3, pp. 473-486. (In Russian).
11. Fizicheskie velichiny. Spravochnik [Physical quantities. Handbook], ed. by I.S. Grigor'eva, E.Z. Mejlikhova, Moscow, Energiya Publ., 1991, 1232 p. (In Russian).
12. Samsonov V.M., Sdobnyakov N.Yu., Bembel A.G. et al. Kompleksnyj podkhod k komp'yuternomu modelirovaniyu plavleniya i kristallizatsii nanoklasterov zolota [Complex approach to the computer simulation of the melting and crystallization of gold nanoclusters], Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta «MIFI», 2013, vol. 2, no. 4, pp. 448-451. DOI: 10.1134/S2304487X13040160. (In Russian).
13. Kolosov A.Yu., Sdobnyakov N.Yu., Komarov P.V. et al. Modelirovanie protsessa koalestsentsii nanochastits zolota metodom Monte-Karlo [Simulation of the coalescence process of gold nanoparticles by Monte-Carlo method], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2012, issue 4, pp. 129-142. (In Russian).
14. Shevkun E.B., Kuzmenko A.P., Leonenko N.A., Yatlukova N.G., Kuzmenko N.A. Sposob lazernogo formoobrazovaniya i obogashcheniya blagorodnymi metallami mineral'nykh assotsiatsij [Method for laser shaping and enrichment of mineral associations with noble metals]. Patent RF, no. 2255995, 2003. (In Russian).
15. Leonenko N.A., Kuzmenko A.P., Silyutin I.V., Rasskazov I.Yu., Sekisov G.V., Gurman M.A., Kapustina G.G., Shvec N.L. Sposob izvlecheniya dispersnogo zolota iz zolotosoderzhashchego vysokoglinistogo mineral'nogo syr'ya [Method for extracting dispersed gold from gold-bearing high-clay mineral raw materials]. Patent RF, no. 2413779, 2011. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒