Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Phase formation in high-chromium steel under electron-ion-plasma treatment

Yu..F. Ivanov1, A.A. Klopotov2, I.V. Lopatin1, O.V. Ivanova2, T.L. Petrikova1, M.S. Petukevich1, E.L. Nikonenko3

1 Institute of High Current Electronics of the Siberian Branch of RAS
2 Tomsk State University of Architecture and Building
3 National Research Tomsk Polytechnic University

DOI: 10.26456/pcascnn/2022.14.609

Original article

Abstract: The surface alloying was carried out by single-cycle and multi-cycle (5 cycles «sputtering-irradiation», in each cycle the thickness of the titanium film 0,5 µm), i.e. high-speed melting of the system «film (Ti)/(steel AISI 310S) substrate» by pulsed electron beam. Nitriding (793 K; for 1, 3 and 5 hours) was carried out under conditions of realization of the elion (electron and ion) treatment mode. The isothermal cross sections of the ternary systems of the state diagram of the Cr – Fe – Ni – Ti – N alloy formed at different stages of the complex treatment of steel are considered. It is shown that (1) irradiation of steel by a pulsed electron beam is accompanied by the formation of a structure of high-speed cellular crystallization of solid solution based on γ–Fe; (2) nitriding of steel in the initial state is accompanied by formation of nitrides of iron Fe4N and chrome CrN with a total content of 79,8 wt.%; (3) pulsed electron-beam pre-irradiation of steel leads to a decrease in the rate of nitride formation during subsequent nitriding; the total nitride content of 53 wt.%; (4) regardless of the number of alloying cycles (titanium concentration in the surface layer) after five hours of nitriding in the samples formed a surface layer of nitrides of chromium and iron (1 cycle of doping) or nitrides of chromium and titanium (5 cycles of doping).

Keywords: complex electron-ion-plasma treatment, electron plasma component heating of samples, high-chromium steel, surface alloying, phase composition

  • Yury F. Ivanov – Dr. Sc., Chief Researcher, Laboratory of Plasma Emission Electronics, Institute of High Current Electronics of the Siberian Branch of RAS
  • Anatoly A. Klopotov – Dr. Sc., Professor, Department of Applied Mechanics and Materials Science, Tomsk State University of Architecture and Building
  • Ilya V. Lopatin – Ph.D., Senior Researcher, Institute of High Current Electronics of the Siberian Branch of RAS
  • Olga V. Ivanova – Ph.D., Associate Professor, Department of Higher Mathematics, Tomsk State University of Architecture and Building
  • Elizaveta L. Petrikova – Junior Researcher, Institute of High Current Electronics of the Siberian Branch of RAS
  • Maria S. Petukevich – Ph. D., Researcher, Institute of High Current Electronics of the Siberian Branch of RAS
  • Elena L. Nikonenko – Ph. D., Senior Lecturer, Department of Natural Sciences, School of Basic Engineering Education, National Research Tomsk Polytechnic University

Reference:

Ivanov, Yu..F. Phase formation in high-chromium steel under electron-ion-plasma treatment / Yu..F. Ivanov, A.A. Klopotov, I.V. Lopatin, O.V. Ivanova, T.L. Petrikova, M.S. Petukevich, E.L. Nikonenko // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 609-620. DOI: 10.26456/pcascnn/2022.14.609. (In Russian).

Full article (in Russian): download PDF file

References:

1. Rothstein V.P., Proskurovsky G.E., Ozur G.E., Ivanov Yu.F. Modifikatsiya poverkhnostnykh sloyov metallicheskikh materialov nizkoenergeticheskimi sil'notochnymi elektronnymi puchkami [Modification of surface layers of metallic materials by low-energy high-current electron beams]. Novosibirsk, Nauka Publ., 2019, 347 p. (In Russian).
2. Surface alloys and alloys surfaces, The Chemical Physics of Solid Surfaces, vol. 10, ed. by D.P. Woodruff. Warwick, Elsevier Science, 2002, 552 p.
3. Woodruff D.P., Robinson J. Some structural issues in surface alloys and alloy surfaces: rumpling, stacking faults and disorder, Applied Surface Science, 2003, vol. 219, issue 1-2, pp. 1-10. DOI: 10.1016/s0169-4332(03)00627-5.
4. Draper C.W., Poate J.M. Laser surface alloying, International Metals Reviews, 1985, vol. 30, issue 1, pp. 85-108. DOI: 10.1179/imtr.1985.30.1.85.
5. Blanco-Pinzon C., Liu Z., Voisey K. et al. Excimer laser surface alloying of titanium with nickel and palladium for increased corrosion resistance, Corrosion Science, 2005, vol. 47, issu5, pp. 1251-1269. DOI: 10.1016/j.corsci.2004.06.030
6. Pogrebnjak A.D., Bakharev O.G., Sushko V. et al. Mixing of Ta-Fe and Mo-Fe systems using a low-energy, high-current electron beam, Surface and Coatings Technology, 1998, vol. 99, issue 1-2, pp. 98-110. DOI: 10.1016/s0257-8972(97)00416-7.
7. Rotshtein V.P., Ivanov Y.F., Kolubaeva Y.A. et al. Synthesis of Ti3Al AND TiAl based surface alloys by pulsed electron-beam melting of Al(film)/Ti(substrate) system, Technical Physics Letters, 2011, vol. 37, issue 3, pp. 226-229. DOI: 10.1134/S1063785011030126.
8. Yakovlev E.V., Markov A.В., Shepel D.A. et al. Adhesive strength of Ni–Cu surface alloy formation by low-energy high-current electron beam, Russian Physics Journal, 2021, vol. 63, issue 10, pp. 1804-1809. DOI: 10.1007/s11182-021-02237-1.
9. Astashinski V.M., Uglov V.V., Cherenda N.N., Shymanski V.I. Modifikatsiya titana pri vozdejstvii kompressionnymi plazmennymi potokami [Titanium modification under the influence of compression plasma flows]. Minsk: Belaruskaya navuka, 2016, 179 p. (in Russian).
10. Cherenda N.N., Basalai A.V., Shymanski V.I. et al. Modification of Ti-6Al-4V alloy element and phase composition by compression plasma flows impact, Surface & Coatings Technology, 2018, vol. 355, pp. 148-154. DOI: 10.1016/j.surfcoat.2018.02.048.
11. Meletis E.I. Intensified plasma-assisted processing: science and engineering, Surface & Coatings Technology, 2002, vol.149. issue 2-3, pp. 95-113. DOI: 10.1016/s0257-8972(01)01441-4.
12. Wei R., Benn C.R., Cooper C.V. High intensity plasma ion nitriding of AerMet 100 martensitic steel, Plasma Processes and Polymers, 2007, vol. 4, issue S1, pp. S700-S706. DOI: 10.1002/ppap.200731801.
13. Yeo S., Lee C.L., Yoon H.S., Kim J.H. Synthesis of plasma-nitrided Cr coatings on HT9 steel for advanced chemical barrier property in a nuclear cladding application, Applied Surface Science, 2022. vol. 579, art. no. 152133. DOI: 10.1016/j.apsusc.2021.152133.
14. Godec M., Ruiz-Zepeda F., Podgornik B. et al. The influence of the plasma-nitriding temperature on the microstructure evolution and surface properties of additive-manufactured 18Ni300 maraging steel, Surface & Coatings Technology, 2022, vol. 433, art. no. 128089. DOI: 10.1016/j.surfcoat.2022.128089.
15. Akhmadeev Y.H., Ivanov Yu.F., Krysina O.V. et al. Electron–ion–plasma modification of carbon steel, High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 2021, vol. 25, issue 1, pp. 47-55. DOI: 10.1615/HighTempMatProc.2021038031.
16. Ivanov Y., Lopatin I., Denisova Y. et al. Elion method of nitriding of high-chromium stainless steel: Structure and properties, Proceedings of the 7th International Congress on Energy Fluxes and Radiation Effects (EFRE), September, 14-26, 2020, Tomsk. Tomsk, Institute of High Current Electronics, 2020, pp. 783-787. DOI: 10.1109/efre47760.2020.9241927.
17. Kurdyumov V.G., Utevsky L.M., Entin R.I. Prevrashcheniya v zheleze i stali [Transformations in iron and steel]. Moscow, Nauka Publ., 1977, 236 p. (in Russian).
18. Klopotov A.A., Ivanov Yu.F., Vlasov V.A., Potekaev A.I. Termodinamicheskij analiz fazoobrazovaniya v nerzhaveyushchej stali, obrabotannoj vysokointensivnym impul'snym elektronnym puchkom [Thermodynamic analysis of phase formation in stainless steel treated by high-intensity pulsed electron beam], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2016, issue 8, pp. 155-163. (in Russian).
19. Evolyutsiya struktury poverkhnostnogo sloya stali, podvergnutoj elektronno-ionno-plazmennym metodam obrabotki [Evolution of the structure of the surface layer of steel subjected to electron-ion-plasma treatment] ed. by pod. red. N.N. Koval’, Yu.F. Ivanov. Tomsk, Publishing House of Scientific and Technical Literature, 2016, 304 p. (in Russian).
20. Ivanov Yu.F., Denisova Yu.A., Petrikova E.A. et al. Kombinirovannyj metod diffuzionnogo nasyshcheniya stali azotom [Combined method of diffusion saturation of steel with nitrogen], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of studying clusters, nanostructures and nanomaterials], 2018, issue 10, pp. 304-312. DOI: 10.26456/pcascnn/2018.10.304. (in Russian).
21. Klopotov A.A. Ivanov Y.F., Petrikova E.A. et al. Strukturno-fazovye sostoyaniya poverkhnostnogo sloya splava Al-Si posle elektronno-ionno-plazmennoj obrabotki [Structural-phase states of surface layer of Al-Si alloy after electron-ion-plasma treatment], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2014, issue 6, pp.162-170. (in Russian).
22. Klopotov A.A., Ivanov Yu.F., Teresov A.D. et al Obrazovanie MAX-faz elektronno-ionno-plazmennymi metodami [Formation of MAX-phases by electron-ion-plasma methods], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of studying clusters, nanostructures and nanomaterials], 2017, issue 9. pp. 236-244. DOI: 10.26456/pcascnn/2017.9.236. (In Russian).
23. Klopotov A.A., Ivanov Yu.F., Petrikova E.A. et al. Nasyshchenie poverkhnosti stali titanom i borom elektronno-ionno-plazmennym metodom: fazovo-strukturnyj sostav [Saturation of steel surface with titanium and boron by electron-ion-plasma method: phase-structural composition], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of studying clusters, nanostructures, and nanomaterials], 2019, issue 11, pp. 605-614. DOI: 10.26456/pcascnn/2019.11.605. (In Russian).
24. Ivanov Yu.F., Petrikova E.A., Teresov A.D., Tolkachev O.S. Struktura i svojstva poverkhnostnogo sloya vysokokhromistoj austenitnoj stali, borirovannoj kompleksnym elektronno-ionno-plazmennym metodom [Structure and properties of the surface layer of high-chromium austenitic steel boronized by complex electron-ion-plasma method] Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of studying clusters, nanostructures and nanomaterials], 2019, issue 11. pp. 596-604. DOI: 10.26456/pcascnn/2019.11.596. (In Russian).
25. Lyakishev N.P., Bannykh O.A., Rokhlin L.L et al. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik [State diagrams of binary metal systems: handbook], ed. by N.P. Lyakishev. Moscow, Mashinostroenie Publ., 2001, vol. 2, 1024 p. (in Russian).
26. Lee B.-J., Lee D.N. A thermodynamic evaluation of the Fe-Cr-Ni system, Journal of Phase Equilibria, 1992, vol. 13, issue 4, pp. 480-489. DOI: 10.1007/bf02674980.
27. Holleck H. Binaere und ternaere carbide und nitride der uebergangsmetalle und ihre phasenbeziehungen. Karlsruhe, Kernforschungszentrum GmbH, 1981, 353 p. (In German).
28. Raghavan V. Cr-Fe-N (chromium-iron-nitrogen), Journal of Phase Equilibria, 1993, vol. 14, issue 5, pp. 625-626. DOI: 10.1007/bf02669149.
29. Eroshenkova I.G., Zakharov A.M., Olenicheva V.G. Diagrammy sostoyaniya metallicheskih sistem, opublikovannye v 1981 godu [State diagrams of metallic systems, published in 1981]. Moscow: VINITI Publ., 1983, 299 p. (in Russian).
30. Duarte, L. I. Experimental study of the Fe–Ni–Ti system, Intermetallics, 2010, vol. 18, issue 3, pp. 374-384. DOI: 10.1016/j.intermet.2009.08.008.
31. Raghavan V. The Cr-Fe-Ti (chromium-iron-titanium) system, Phase Diagrams of Ternary Iron Alloys. Part 1. Materials Park, OH, ASM International, 1987, pp. 43-54.

⇐ Prevoius journal article | Content | Next journal article ⇒