Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Peculiar properties of methods for obtaining amorphous nanofilms for creating gas-sensitive sensors under the action of laser double pulses on the surface of a target containing tin

A.P. Zajogin1, N.H. Trinh2, M.A. Malets3, M.P. Patapovich3

1 Belarusian State University
2 Vinh University
3 Belarusian State Academy of Communications

DOI: 10.26456/pcascnn/2022.14.602

Short communication

Abstract: A layer-by-layer analysis of metals and alloys has been carried out, and the possibility of deposition of nanofilms containing tin in their composition on various types of surfaces (metal, glass) under the action of dual laser pulses on a target in an air atmosphere has been studied. The experiments were carried out using the laser two-pulse multichannel atomic emission spectrometer LSS-1. The advantages of the pulsed laser deposition as a method for producing clusters and fractals are: versatility in relation to the material, the ability to exclude impurities, the flexibility of the method, and the ability of controlling the formation of film structures. The performed spectroscopic studies of the laser plasma formed by the action of two successive pulses on a target illustrate the development of methods for obtaining nanoclusters of various chemical elements. This method can be used to obtain nanofilms of not only pure metals, but also composite alloys. The possibility of obtaining nanofilms for creating gas-sensitive sensors is shown.

Keywords: double laser pulses, laser plasma, layer-by-layer analysis, deposition of thin films, nanopowder technologies, multichannel atomic emission spectrometry

  • Anatoli P. Zajogin – Dr. Sc., Full Professor, Department of Laser Physics and Spectroscopy, Faculty of Physics, Belarusian State University
  • Ngoc H. Trinh – Ph. D., Head of the Applied Physics Department, Vinh University
  • Mariya A. Malets – 1st year graduate student, Faculty of telecommunications, Belarusian State Academy of Communications
  • Mariya P. Patapovich – Ph. D., Docent, Belarusian State Academy of Communications

Reference:

Zajogin, A.P. Peculiar properties of methods for obtaining amorphous nanofilms for creating gas-sensitive sensors under the action of laser double pulses on the surface of a target containing tin / A.P. Zajogin, N.H. Trinh, M.A. Malets, M.P. Patapovich // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 602-608. DOI: 10.26456/pcascnn/2022.14.602. (In Russian).

Full article (in Russian): download PDF file

References:

1. Ilyin A.P., Mostovshchikov A.V., Korshunov A.V., Root L.O. Osobennosti fiziko-khimicheskikh svojstv nanoporoshkov i nanomaterialov: uchebnoe posobie [Features of physico-chemical properties of nanopowders and nanomaterials: textbook], 2nd ed. Tomsk: TPU Publishing House, 2017, 212 p. (In Russian).
2. Khomskii D.I., Mizokawa T. Orbitally induced Peierls state in spinels, Physical Review Letters, 2005, vol. 94, issue 15, pp. 156402-1-156402-4. DOI: 10.1103/PhysRevLett.94.156402.
3. Tangcharoen T., T-Thienprasert J., Kongmark C. Optical properties and versatile photocatalytic degradation ability of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles, Journal of Materials Science: Materials in Electronics, 2018, vol. 29, issue 11, pp. 8995-9006. DOI: 10.1007/s10854-018-8924-4.
4. Han M., Wang Z.S., Xu Y. et al. Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O44, and ZnAl2O4 spinels synthesized by a solution combustion method, Materials Chemistry and Physics, 2018, vol. 215, pp. 251-258. DOI: 10.1016/j.matchemphys.2018.05.029.
5. Su S.-Y., Wang S.-S., Sakthinathan S. et al. Preparation of CuAl2O4 submicron tubes from electrospun Al2O3 fibers, Ceramics International, 2019, vol. 45, issue 1, pp. 1439-1442. DOI: 10.1016/j.ceramint.2018.09.251.
6. Salavati-Niasari M., Davar F., Farhadi M. Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol–gel method, Journal of Sol-Gel Science and Technology, 2009, vol. 51, issue 1, pp. 48-52. DOI: 10.1007/s10971-009-1940-3.
7. Bazzal K., Voropay Е.S., Zajogin А.P., Patapovich М.P. ssledovanie vliyaniya formy kanala na protsessy obrazovaniya nanoklasterov AlN i AlO v plazme pri vozdejstvii serij sdvoennykh lazernykh impul'sov na alyuminievuyu mishen' v vozdushnoj atmosfere [Investigation of the channel-form effect on the formation processes of AlN and AlO nanoclusters in plasma when aluminum target is subjected to series of double laser pulses in air], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 57-64. DOI: 10.26456/pcascnn/2019.11.057. (In Russian).
8. Bazzal Kh., Fadaeian A.R., Zajogin А.P. Issledovaniya protsessov obrazovaniya nitrida alyuminiya v plazme v zavisimosti ot ugla padeniya sdvoennykh lazernykh impul'sov na mishen' iz alyuminievogo splava D16T v atmosfere vozdukha [Investigation into the formation processes of aluminium nitride in the plasma depending on the incidence angle of double laser pulses onto the target of D16T aluminium alloy in the air], Zhurnal Belorusskogo gosudarstvennogo universiteta. Fizika [Journal of the Belarusian State University. Physics], 2017, no. 1, pp. 34-42. (In Russian).
9. Grigor'yants A.G. Osnovy lazernoj obrabotki materialov [Fundamentals of laser processing of materials]. Moscow, Mashinostroenie Publ., 1989, 304 p. (In Russian).
10. Sdobnyakov N.Yu., Samsonov V.M., Bazulev A.N. On the mechanical stability conditions for nanoparticles in vacuum and under an external pressure, Journal of Physics: Conference Series, 2019, vol. 1352, no. 1, art. no. 012045, 4 p. DOI: 10.1088/1742-6596/1352/1/012045.
11. Samsonov V.M., Sdobnyakov N.Yu. A thermodynamic approach to mechanical stability of nanosized particles, Central European Journal of Physics, 2003, vol. 1, issue 2, pp. 344-354. DOI: 10.2478/BF02476301.

⇐ Prevoius journal article | Content | Next journal article ⇒