Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Structure and composition of thin GaAs1-x-yNxBiy films produced by pulsed laser deposition

O.V. Devitsky1,2

1 Federal Research Center Southern Scientific Center of the Russian Academy of Sciences
2 North Caucasus Federal University

DOI: 10.26456/pcascnn/2022.14.593

Original article

Abstract: Uniaxial cold pressing was used to fabricate GaAs0,9Bi0,1 targets with 10% Bi content. Thin
films of GaAs1-x-yNxBiy onto a GaAs (100) substrate were obtained from the formed GaAs0,9Bi0,1 target
by pulsed laser deposition in an argon-nitrogen gas atmosphere, and their structure and composition
were studied. It is shown that on the surface of the film there are predominantly small microdroplets
with a diameter of less than 0,5 μm, formed by Bi atoms. Large microdroplets with a diameter of 2 to 6
μm consist partly of Bi and Ga. No microdroplets formed only from Ga were found. It is noted that
small Ga microdroplets are adsorbed on the surface of large Bi microdroplets without forming a GaBi
alloy. It was also found that the formation of Bi microdroplets also occurs due to the segregation of Bi
atoms on the film surface. The energy-dispersive spectroscopy data make it possible to characterize
the resulting thin films as GaAs0,995N0,015Bi0,03. The mean square roughness of the film surface was 12,2
nm. The resulting GaAs0,995N0,015Bi0,03 film has a polycrystalline structure. An analysis of the X-ray
diffraction data showed that the film grew according to the Volmer-Weber law, when islands are
nucleated and their sizes subsequently increase. The nuclei are most likely formed by GaAs, GaN,
GaAsN, GaAsBi, and GaAsNBi. The calculated full width at half height for GaAs0,995N0,015Bi0,03 was –
0,8656ʺ, and the average crystallite size was 1,6 nm.

Keywords: thin films, III-V-N-Bi, GaAs1-x-yNxBiy, pulsed laser deposition, diluted nitrides, diluted bismuthides

  • Oleg V. Devitsky – Ph. D., Senior Researcher, Laboratory of Physics and Technology of Semiconductor Nanoheterostructures for Microwave Electronics and Photonics, Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Senior Researcher, Scientific and Educational Center for Photovoltaics and Nanotechnology North Caucasus Federal University

Reference:

Devitsky, O.V. Structure and composition of thin GaAs1-x-yNxBiy films produced by pulsed laser deposition / O.V. Devitsky // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 593-601. DOI: 10.26456/pcascnn/2022.14.593. (In Russian).

Full article (in Russian): download PDF file

References:

1. Marko I.P., Sweeney S.J. Progress toward III-V bismide alloys for near- and midinfrared laser diodes, IEEE Journal of Quantum Electronics, 2017, vol. 23, issue 6, art. no. 1501512, 12 p. DOI: 10.1109/JSTQE.2017.2719403.
2. Mbarki M., Rebey A.A. First principles calculations of structural and electronic properties of GaN1-xBix alloys, Journal of Alloys and Compounds, 2012, vol. 530, pp. 36-39. DOI: 10.1016/j.jallcom.2012.03.088.
3. Feng G., Oe K., Yoshimoto M. Influence of thermal annealing treatment on the luminescence properties of dilute GaNAs-bismide alloy, Japanese Journal of Applied Physics, 2012, vol. 46, issue 23, pp. L764-L766. DOI: 10.1143/JJAP.46.L764.
4. Sweeney S.J., Jin S.R. Bismide-nitride alloys: promising for efficient light emitting devices in the nearand mid-infrared, Journal Applied Physics, 2013, vol. 113, issue 4, pp. 043110-1-043110-6. DOI: 10.1063/1.4789624.
5. Ma X.Y., Li D.C., Zhao S.Z. et al. The electronic and optical properties of quaternary GaAs1-x-yNxBiy alloy lattice-matched to GaAs: a first-principles study, Nanoscale Research Letters, 2014, vol. 9, no. 1, art. no. 580, 8 p. DOI: 10.1186/1556-276X-9-580.
6. Yoshimoto M., Huang W., Feng G., Oe K. New semiconductor alloy GaNAsBi with temperature-insensitive bandgap, Physica Status Solidi (B): Basic Research, 2006, vol. 243, issue 7, pp. 1421-1425. DOI: 10.1002/pssb.200565270.
7 Huang W., Oe K., Feng G. et al. Molecular-beam epitaxy and characteristics of GaAs1-x-yNxBiy, Journal of Applied Physics, 2005, vol. 98, issue 7, pp. P. 053505-1-053505-7. DOI: 10.1063/1.2032618.
8 Yoshimoto M., Oe K., Yamada M. et. al. New semiconductor GaNAsBi alloy grown by molecular beam epitaxy, Japanese Journal of Applied Physics, 2004, vol. 43, no. 7A, pp. L845–L847. DOI: 10.1143/JJAP.43.L845.
9. Rockett T.B.O., Richards R.D., Gu Y. et al. Influence of growth conditions on the structural and opto-electronic quality of GaAsBi, Journal of Crystal Growth, 2017, vol. 477, pp. 139-143. DOI: 10.1016/j.jcrysgro.2017.02.004.
10. Lu X., Beaton D.A., Lewis R.B., Tiedje T., Whitwick M.B. Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1-xBix, Applied Physics Letters, 2008, vol. 92, issue 19, pp. 192110-1-192110-3. DOI: 10.1063/1.2918844.
11. Occena J., Jen T., Rizzi E.E. et al. Bi-enhanced N incorporation in GaNAsBi alloys, Applied Physics Letters, 2017, vol. 110, issue 24, pp. 242102-1-242102-6. DOI: 10.1063/1.4984227.
12. Yoshimoto M., Huang W., Feng G. et al. Molecular-beam epitaxy of GaNAsBi layer for temperature-insensitive wavelength emission, Journal of Crystal Growth, 2007, vol. 301, pp. 975-978. DOI: 10.1016/j.jcrysgro.2006.11.118.
13. Bushell Z.L.,Ludewig P., Knaub N. et al. Growth and characterisation of Ga(NAsBi) alloy by metal-organic vapour phase epitaxy, Journal of Crystal Growth, 2014, vol. 396, pp. 79-84. DOI: 10.1016/j.jcrysgro.2014.03.038.
14. Devitsky O.V. Morfologiya poverkhnosti i struktura tonkikh plenok InGaAsN na Si [Roughness and structure of InGaAsN thin films on Si], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 106-114. DOI: 10.26456/pcascnn/2021.13.106. (In Russian)
15. Pashchenko A.S., Devitsky O.V., Lunin L.S. et al Structure and morphology of GaInAsP solid solutions on GaAs substrates grown by pulsed laser deposition, Thin Solid Films, 2022, vol. 743, art. no. 139064, 8 p. DOI: 10.1016/j.tsf.2021.139064.
16. Pashchenko A.S., Devitsky O.V., Lunin L.S., Lunin M.L, Pashchenko O.S.Strukturnye svoistva tverdykh rastvorov GaInAsSbBi, vyrashchennykh na podlozhkakh GaSb [Structural properties of solid solutions GaInAsSbBi grown on substrates GaSb], Pis'ma v zhurnal tekhnicheskoi fiziki [Technical Physics Letters], 2022, vol. 48, no. 10, pp. 24-27. DOI: 10.21883/PJTF.2022.10.52552.19164. (In Russian).
17. Devitsky O.V., Nikulin D.A., Sysoev I.A. Impul'snoe lazernoe napylenie tonkikh plenok nitrida alyuminiya na sapfirovye podlozhki [Pulsed laser deposition of aluminum nitride thin films onto sapphire substrates], Nauchno-tekhnicheskij vestnik informatsionnykh tekhnologij, mekhaniki i optiki [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2020, vol. 20, no. 2, pp. 177-184. DOI: 10.17586/2226-1494-2020-20-2-177-184.
18. Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis, Central European Journal of Physics, 2012, vol. 10, issue 1, pp. 181-188. DOI: 10.2478/s11534-011-0096-2.
19. Ooi Z.V., Saif A.A., Wahab Y., Jamal Z.A.Z. X-ray line profile analysis of BaTiO3 thin film prepared by sol-gel deposition, AIP Conference Proceedings, 2017, vol. 1835, issue 1, pp. 020011-1-020011-5. DOI: 10.1063/1.4981833.

⇐ Prevoius journal article | Content | Next journal article ⇒