Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Effect of synthesis conditions on the formation of Y3-xLaxFe5-yO12+δ/La1-xYxFe1-yO3 composite

O.I. Gyrdashova1, A.E. Stepanov2, S.V. Naumov3, S.N. Shkerin4

1 Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
2 Ural Federal University named after the first President of B.N. Yeltsin
3 Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
4 Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

DOI: 10.26456/pcascnn/2022.14.583

Original article

Abstract: Glass-like composite materials with high oxygen conductivity values were obtained by growing from a homogeneous melt by the method of non-melting zone melting. A complex architecture of the composite is observed: the main phase is highly defective in cationic and anionic sublattices Y3-xLaxFe5-yO12+δ with a garnet structure, inside which the germination of filamentous crystals La1-xYxFe1-yO3 with a perovskite structure is observed. The effect of the method of synthesis of polycrystalline precursors used as raw materials for the production of the melt on the formation of the structure of composites La1-xYxFe1-yO3/Y3-xLaxFe5-yO12+δ is investigated. The composite obtained from the precursor formed by the formate method contains ~87 mol.% of the main phase.The composite obtained from the precursor formed by the self-propagating high-temperature synthesis is ~76 mol.% of the garnet phase. The obtained composites have a certain growth direction of the main phase Y3-xLaxFe5-yO12+δ <100>.

Keywords: yttrium ferrite, garnet structures, synthesis, precursors, morphology, composites, oxygen conductivity

  • Olga I. Gyrdashova – Ph. D., Leading Researcher, Laboratory of Inorganic Synthesis, Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
  • Anton E. Stepanov – 4th year student, Institute of New Materials and Technologies, Ural Federal University named after the first President of B.N. Yeltsin
  • Sergey V. Naumov – Ph. D., Senior Researcher, Laboratory of Magnetic Semiconductors, Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
  • Sergey N. Shkerin – Dr. Sc., Chief Researcher, Laboratory of Electrochemical Materials Science, Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Reference:

Gyrdashova, O.I. Effect of synthesis conditions on the formation of Y3-xLaxFe5-yO12+δ/La1-xYxFe1-yO3 composite / O.I. Gyrdashova, A.E. Stepanov, S.V. Naumov, S.N. Shkerin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 583-592. DOI: 10.26456/pcascnn/2022.14.583. (In Russian).

Full article (in Russian): download PDF file

References:

1. Geller S., Gilleo M.A. Structure and ferrimagnetism of yttrium and rareearth–iron garnets, Acta Crystallographica, 1957, vol. 10, part 3, pp. 239-246. DOI:10.1107/S0365110X57000729.
2. Aichele, T. Lorenz, R. Hergt, Görnert P. Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications, Crystal Research and Technology, 2003, vol. 38, issue 7-8, pp. 575-587, DOI:10.1002/crat.200310071.
3. Harris V.G., Geiler A., Chen Y. et al. Recent advances in processing and applications of microwave ferrites, Journal of Magnetism and Magnetic Materials, 2009, vol. 321, issue 14, pp 2035-2047. DOI: 10.1016/J.JMMM.2009.01.004.
4. Elwell D., Dixon A. Mechanism of electrical conduction in garnets, Solid State Communications, 1968, vol. 6, issue 8, pp. 585-587. DOI: 10.1016/0022-4596(75)90315-1.
5. Larsen K., Metselaar R. Electrical properties of yttrium iron garnet at high temperatures, Physical Review B, 1976, vol. 14, issue 6, pp. 2520-2527. DOI: 10.1103/PhysRevB.14.2520.
6. Liu H., Yuan L., Wang S. et al. Structure, optical spectroscopy properties and thermochromism of Sm3Fe5O12 garnets, Journal of Materials Chemistry C, 2016, vol. 4, issue 44, pp. 10529-10537. DOI: 10.1039/c6tc02830f.
7. Yamagishi T., Awaka J., Kawashima Y. et al. Ferrimagnetic order in the mixed garnet (Y1-xGdx)3Fe5O12, Philosophical magazine, 2006, vol. 85, issue 17, pp. 1819-1833. DOI: 10.1080/09500830500038092.
8. Jiang L., Yang S., Zheng M., Chen H., Wu A. Synthesis and magnetic properties of nanocrystalline Gd3Fe5O12 and GdFeO3 powders prepared by sol–gel auto-combustion method, Materials Research Bulletin, 2018, vol. 104, pp. 92-96. DOI: 10.1016/j.materresbull.2018.04.010.
9. Kharton V.V., Shaula A.L., Naumovich E.N. et al. Ionic transport in Gd3Fe5O12− and Y3Fe5O12−based garnets. Journal of the Electrochemical Society, 2003, vol. 150, no. 7, pp. J33-J42. DOI: 10.1149/1.1574810.
10. Bhosale D.R., Yusuf S.M., Kumar A. et al. High oxide ion conductivity below 500 ◦C in the garnets LaxY3-xFe5O12+δ. Physical Review Materials, 2017, vol. 1, issue 1, art. no. 015001, 5 p. DOI: 10.1103/PhysRevMaterials.1.015001.
11. Yousaf M., Akhtar M., Shah M.Y. et al. Evaluation of rare earth (Yb, La) doped (Sm3Fe5O12) garnet ferrite membrane for LT-SOFC. International journal of Hydrogen Energy, 2021, vol. 46, issue 15, pp. 9996-10006. DOI: 10.1016/j.ijhydene.2020.01.166.
12. Sharma V., Saha J., Patnaik S., Kuanr B. Synthesis and characterization of yttrium iron garnet (YIG) nanoparticles - microwave material, AIP Advances, 2017, vol. 7, issue 5, pp. 056405-1-056405-6. DOI: 10.1063/1.4973199.
13. Gyrdasova О.I., Pasechnik L.A., Krasil’nikov V.N., Syrikov V.T., Kuznetsov M.V. Sorbcionnaya i fotokataliticheskaya aktivnost’ Zn1-xCuxO (x=0,05 and 0,15) k As (III) v shchelochnoj srede [Sorpion and photocatalytic activity of Zn1-xCuxO (x=0,05 i 0,15) to As (III) in an alkaline medium], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov[Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 792-804. DOI: 10.26456/pcascnn/2020.12.792. (In Russian).
14. Porotnikova N., Farlenkov A., Naumov S. et al. Effect of grain boundaries in La0.84Sr0.16CoO3−δ on oxygen diffusivity and surface exchange kinetics, Physical Chemistry Chemical Physics, 2021, vol. 23, issue 19, pp. 11272-11286 DOI:10.1039/D1CP01099A.

⇐ Prevoius journal article | Content | Next journal article ⇒