Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


On the processes of segregation and stability of bimetallic nanoparticles Ni@Ag and Ag@Ni

K.G. Savina, I.R. Galuzin, A.Yu.. Kolosov, S.S. Bogdanov, A.D. Veselov, N.Yu.. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2022.14.499

Original article

Abstract: This work studied bimetallic nanoparticles Ni@Ag and Ag@Ni with the total number of atoms 4000 by the molecular dynamics method using the tight-binding potential. The pattern of segregation and structural formation is established and its characteristics are described. Based on the analysis of the behavior of the calorie curves of the potential part of the internal energy, the melting and crystallization temperature was determined. The data obtained suggest that the processes of segregation in Ni@Ag and Ag@Ni nanoparticles are associated with the nanoparticle stability. The silver shell loses its stability above 900 K, while the nickel core remains solid and retains its structure. At the same time, in Ni675@Ag3325 nanoparticles the processes of the surface segregation of the nucleus atoms were less pronounced, whereas in Ag675@Ni3325 nanoparticles silver atoms actively segregated onto the surface of the nanoparticle. The features and fundamental differences in the processes of melting and crystallization of these nanosystems, as well as the temperature ranges of their stability, are analyzed. The relationship between the degree of intensity of segregation processes of nanoalloys during modeling and the stability of these systems is shown.

Keywords: molecular dynamics method, bimetallic nanoparticles, nickel, silver, segregation, structure formation, stability, core-shell

  • Ksenia G. Savina – 2nd year graduate student, General Physics Department, Tver State University
  • Ivan R. Galuzin – 1st year graduate student, General Physics Department, Tver State University
  • Andrey Yu.. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Sergei S. Bogdanov – Researcher, General Physics Department, Tver State University
  • Alexei D. Veselov – 4th year postgraduate student, General Physics Department, Tver State University
  • Nickolay Yu.. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Savina, K.G. On the processes of segregation and stability of bimetallic nanoparticles Ni@Ag and Ag@Ni / K.G. Savina, I.R. Galuzin, A.Yu.. Kolosov, S.S. Bogdanov, A.D. Veselov, N.Yu.. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 499-511. DOI: 10.26456/pcascnn/2022.14.499. (In Russian).

Full article (in Russian): download PDF file

References:

1. Myasnichenko V.S., Ershov P.M., Savina K.G. et al. Zakonomernosti strukturoobrazovaniya v bimetallicheskikh nanochastitsakh s raznoj temperaturoj kristallizatsii [Regularities of structure formation in bimetallic nanoparticles with different crystallization temperatures], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 568-579. DOI: 10.26456/pcascnn/2021.13.568. (In Russian).
2. Suliz K.V., Kolosov A.Yu., Myasnichenko V.S. et al. Control of cluster coalescence during formation of bimetallic nanoparticles and nanoalloys obtained via electric explosion of two wires, Advanced Powder Technology, 2022, vol. 33, art. no 103518, 15 p. DOI: 10.1016/j.apt.2022.103518.
3. Sdobnyakov N.Yu., Khort A.A., Myasnichenko V.S. et al. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles, Computational Materials Science, 2020, vol. 184, art. no. 109936, 12 p. DOI: 10.1016/j.commatsci.2020.109936.
4. Tsuji M., Miyamae N., Lim N. et al. Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwavepolyol method, Crystal Growth & Design, 2006, vol. 6, issue 8, pp. 1801-1807. DOI: 10.1021/cg060103e.
5. Bogdanov S.S., Samsonov V.M., Sdobnyakov N.Yu., et al. Molecular dynamics simulation of the formation of bimetallic core-shell nanostructures with binary Ni-Al nanoparticle quenching, Journal of Materials Science, 2022, vol. 57, issue 28, pp. 13467-13480. DOI: 10.1007/s10853-022-07476-2.
6. Lee C.-C., Chen D.-H. Large-scale synthesis of Ni–Ag core–shell nanoparticles with magnetic, optical and anti-oxidation properties, Nanotechnology, 2006, vol. 17, issue 13, pp. 3094-3099. DOI: 10.1088/0957-4484/17/13/002.
7. Zhang Z., Nenoff T.M., Leung K. et al. Room-temperature synthesis of Ag−Ni and Pd−Ni alloy nanoparticles, The Journal of Physical Chemistry C, 2010, vol. 114, issue 34, pp. 14309-14318. DOI: 10.1021/jp911947v.
8. Vykoukal V., Bursik J., Roupcova P. et al. Solvothermal hot injection synthesis of core-shell AgNi nanoparticles, Journal of Alloys and Compounds, 2019, vol. 770, pp. 377-385. DOI: 10.1016/j.jallcom.2018.08.082.
9. Guo H., Chen Y., Chen X. et al. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen, Nanotechnology, 2011, vol. 22, issue 19, art. no 195604, 8 p. DOI: 10.1088/0957-4484/22/19/195604.
10. Ger T.-R., Huang H.-T., Huang C.-Y. et al. Comparing the magnetic property of shell thickness controlled of Ag-Ni core-shell nanoparticles, Journal of Applied Physics, 2014, vol. 115, issue 17, pp. 17B528-1-17B528-3. DOI:10.1063/1.4867606.
11. Myasnichenko V.S. Molecular dynamic modeling and bioinspired optimization of binary and ternary metal nanostructures (ClusterEvolution). Certificate RF, no. 2011615692, 2011. (In Russian).
12. Cleri F., Rosato V. Tight binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
13. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
14. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
15. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
16. Sokolov D.N., Sdobnyakov N.Yu., Savina K.G., Kolosov A.Yu., Myasnichenko V.S. Novye vozmozhnosti vysokoproizvoditel'nykh raschetov nanosistem s ispol'zovaniem programmnogo obespecheniya Metropolis [New opportunities for high-performance simulations of nanosystem using Metropolis software], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 624-638. DOI: 10.26456/pcascnn/2021.13.624. (In Russian).
17. Sdobnyakov N.Yu., Kolosov A.Yu., Bogdanov S.S. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh: monografiya [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems: monograph]. Tver, Tver State University Publ., 2021, 168 p. DOI: 10.26456/skb.2021.168. (In Russian).
18. Kolosov A.Yu. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems], Cand. phys.-math. sci. diss. Tver, Tver State University Publ., 2020, 200 p. (In Russian).
19. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
20. Samsonov V.M., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Factors of the stability/instability of bimetallic core–shell nanostructure, Bulletin of the Russian Academy of Sciences: Physics, 2021, vol. 85, issue 9, pp. 950-954. DOI: 10.3103/S1062873821090240.
21. Bogdanov S.S., Myasnichenko V.S., Kolosov A.Yu. et al. The features of the crystallization process in bimetallic nanostructures under external pressure, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 422-430. DOI: 10.26456/pcascnn/2019.11.422. (In Russian).

Content |