Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Molecular dynamics study of the size limit of the transition of silver nanoclusters with an initial amorphous substructure into FCC phase

D.A. Ryzhkova, S.L. Gafner, Yu..Ya.. Gafner, A.A. Cherepovskaya

KatanovKhakas State University

DOI: 10.26456/pcascnn/2022.14.490

Original article

Abstract: Silver nanoclusters with diameter of 3,0 to 7,0 nm were studied by the molecular dynamics method using the tight binding potential TB-SMA (second moment approximation of tight-binding potential). A search was made for the stability limits of structural modifications of these nanoclusters for determination of the size limit of the thermally induced structural transition from the initial amorphous morphology to the fcc phase. The new data were compared with the results of previous studies for Ag nanoparticles up to 2,0 nm in size with initial fcc and amorphous structures. It is shown that the studied nanoclusters can be conditionally divided into three categories. The first one (N < 100 atoms) is characterized by partial preservation of the original morphology. For the second one (d < 4,0 nm), there is competition between the icosahedral and decahedral structures. And for the thirds (d > 4,0 nm), the mixed fcc/hcp phase predominates. In this case, the size limit of the transition from the initial amorphous morphology to the structure characteristic for the bulk matter is a diameter of about 7,0 nm.

Keywords: nanoclusters, silver, computer simulation, structure, tight binding, phase transitions, structural stability

  • Daria A. Ryzhkova – postgraduate student, Assistant of the Department of Mathematics, Physics and Information Technology, KatanovKhakas State University
  • Svetlana L. Gafner – Dr. Sc., Docent, Professor of the Department of Mathematics, Physics and Information Technology, KatanovKhakas State University
  • Yury Ya.. Gafner – Dr. Sc., Professor, Chief of the Department of Mathematics, Physics and Information Technology, KatanovKhakas State University
  • Arina A. Cherepovskaya – student of the Department of Mathematics, Physics and Information Technology, N.F., KatanovKhakas State University

Reference:

Ryzhkova, D.A. Molecular dynamics study of the size limit of the transition of silver nanoclusters with an initial amorphous substructure into FCC phase / D.A. Ryzhkova, S.L. Gafner, Yu..Ya.. Gafner, A.A. Cherepovskaya // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 490-498. DOI: 10.26456/pcascnn/2022.14.490. (In Russian).

Full article (in Russian): download PDF file

References:

1. Baletto F., Ferrando R. Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects, Reviews of Modern Physics, 2005, vol. 77, issue 1, pp. 371-423. DOI: 10.1103/RevModPhys.77.371.
2. Settem M., Islam M., Kanjarla A.K. On the effect of relative stabilities of FCC-like and HCP-like atoms on structure of FCC silver nanoclusters, Computational Materials Science, 2018, vol. 148, pp. 266-271. DOI: 10.1016/j.commatsci.2018.02.051.
3. Ino S. Stability of multiply-twinned particles, Journal of the Physical Society of Japan, 1969, vol. 27, issue 4, pp. 941-953. DOI: 10.1143/JPSJ.27.941.
4. Marks L.D. Surface structure and energetics of multiply twinned particles, Philosophical Magazine A, 1984, vol. 49, issue 1, pp. 81-93. DOI: 10.1080/01418618408233431.
5. Baletto F. Structural properties of sub-nanometer metallic clusters, Journal of Physics: Condensed Matter, 2019, vol. 31, no. 11, art. no. 113001. 42 p. DOI: 10.1088/1361-648X/aaf989.
6. Pavan L., Rossi K., Baletto F. Metallic nanoparticles meet metadynamics, The Journal of Chemical Physics, 2015, vol. 143, art. no. 184304, 4 p. DOI: 10.1063/1.4935272.
7. Gould A., Logsdail A.J., Catlow C.R.A. Influence of composition and chemical arrangement on the kinetic stability of 147-atom Au–Ag bimetallic nanoclusters, The Journal of Physical Chemistry C., 2015, vol. 119, issue 41, pp. 23685-23697. DOI: 10.1021/acs.jpcc.5b03577.
8. Gould A.L., Rossi K., Catlow C.R.A., Baletto F., Logsdail A.J. Controlling structural transitions in AuAg nanoparticles through precise compositional design, The Journal of Physical Chemistry Letters, 2016, vol. 7, issue 21, pp. 4414-4419. DOI: 10.1021/acs.jpclett.6b02181.
9. Rossi K., Pavan L., Soon YY., Baletto F. The effect of size and composition on structural transitions in monometallic nanoparticles, The European Physical Journal B., 2018, vol. 91, issue 2, art. no. 33, 8 p. DOI: 10.1140/epjb/e2017-80281-6.
10. Gafner Y., Gafner S., Bashkova D. On measuring the structure stability for small silver clusters to use them in plasmonics, Journal of Nanoparticle Research, 2019, vol. 21, art. № 243, 15 p. DOI: 10.1007/s11051-019-4691-2.
11. Ryzhkova D.A., Gafner Yu.Ya., Gafner S. L. Issledovanie termicheskoj stabil'nosti malyh nanoklasterov serebra s nachal'noj amorfnoj substrukturoj [Thermal stability of the small size silver clusters structure with initial amorphic morphology], Fundamental’nye problem sovremennogo materialovedenia [Basic Problems of Material Science], 2021, vol. 18, no. 1, pp. 17-23. DOI: 10.25712/ASTU.1811-1416.2021.01.002. (In Russian).
12. Ryzhkova D.A., Gafner Yu.Ya. Termicheskaya stabil'nost' stroeniya malyh GCK-magicheskih razmerov klasterov serebra s nachal\'noj amorfnoj konfiguraciej [Thermal stability of small FCC-magic size silver clusters structure with the initial amorphous configuration], Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 486-492. DOI: 10.26456/pcascnn/2020.12.486. (In Russian).
13. Ryzhkova D.A., Gafner S.L., Gafner Yu.Ya. Ustojchivost' vnutrennego stroeniya nanoklasterov Ag55 i Ag147 pri variacii nachal'noj morfologii [Structural stability of Ag55 and Ag147 nanoclusters with a change in the initial morphology], Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 604-611. DOI: 10.26456/pcascnn/2021.13.604. (In Russian).
14. Ryzhkova D.A., Gafner S.L., Gafner Yu.Ya. Rol' «magicheskikh» GPU chisel v ustojchivosti vnutrennego stroeniya nanoklasterov Ag89 i Ag153 [Role of «magic» HCP numbers in stability of the internal structure of Ag89 and Ag153], Fiziko-himicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 593-603. DOI: 10.26456/pcascnn/2021.13.593. (In Russian).
15. Cleri F., RosatoV. Tight binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
16. Verlet L. Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967, vol. 159, issue 1, pp. 98-103. DOI: 10.1103/PhysRev.159.98.
17. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, no. 1, art. no. 015012, 7 p. DOI: 10.1088/0965-0393/18/1/015012.
18. Kuzmin V.I., Tytik D.L., Belashchenko D.K., Sirenko A.N. Structure of silver clusters with magic numbers of atoms by data of molecular dynamics, Colloid Journal, 2008, vol. 70, issue 3, pp. 284-296. DOI: 10.1134/S1061933X08030058.

⇐ Prevoius journal article | Content | Next journal article ⇒