Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Molecular dynamic simulation of heating of titanium nanoclusters

N.A. Pan'kin

National Research Ogarev Mordovia State University

DOI: 10.26456/pcascnn/2022.14.479

Original article

Abstract: The melting of titanium nanoclusters Tin (n = 3599, 28725, 97045) with different heating rates (from 0,1 to and 10,0 TK/s) was studied by the molecular dynamics method. Molecular dynamics simulation was carried out using the LAMMPS program on a multiprocessor computer. A many-particle potential of interatomic interaction was used. The crystal structure of a titanium nanocluster upon heating passes into the liquid phase through the formation of a system of atoms (islands) with an ordered local environment near the melting point. The appearance of the latter is due to the non-equilibrium of the simulated heating process – the system does not have time to relax to an equilibrium state for a chosen temperature. The melting temperature was taken as the average value between the temperatures of the beginning and finishing of the phase transition process. The temperature of the beginning of melting corresponded to the state of completion of formation of individual islands. At the end of melting, the nanostructure is characterized by a completely disordered structure. It is noted that the melting temperature increases with the size of the nanoparticle and the rate of its heating. The limiting temperatures of the considered phase transition (at N → ∞) are significantly lower than the melting temperature of the bulk titanium.

Keywords: titanium, nanocluster, melting point, heating rate, structure, islands, molecular dynamics method

  • Nikolay A. Pan'kin – Ph. D., Docent, Department of Physical Materials Science, National Research Ogarev Mordovia State University


Pan'kin, N.A. Molecular dynamic simulation of heating of titanium nanoclusters / N.A. Pan'kin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 479-489. DOI: 10.26456/pcascnn/2022.14.479. (In Russian).

Full article (in Russian): download PDF file


1. Suzdalev I.P., Suzdalev P.I. Nanoclusters and nanocluster systems. Assembling, interactions and properties, Russian Chemical Reviews, 2001, vol. 70, issue 3, pp. 177-210. DOI: 10.1070/RC2001v070n03ABEH000627.
2. Smirnov B.M. Processes involving clusters and small particles in a buffer gas, Physics-Uspekhi, 2011, vol. 54, issue 6, pp. 691-721. DOI: 10.3367/UFNr.0181.201107b.0713.
3. Makarov G.N. Extreme processes in clusters impacting on a solid surface, Physics-Uspekhi, 2006, vol. 49, issue 2, pp. 117-166. DOI: 10.3367/UFNr.0176.200602a.0121.
4. Baletto F., Ferrando R. Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Reviews of Modern Physics, 2005, vol.77, issue 1, pp. 371-423. DOI: 10.1103/RevModPhys.77.371.
5. Samsonov V.M., Talyzin I.V., Samsonov M.V. On the effect of heating and cooling rates on the melting and crystallization of metal nanoclusters, Technical Physics, 2016, vol. 61, issue 6, pp. 946-949. DOI: 10.1134/S1063784216060207.
6. Gafner S.L., Redel L.V., Gafner Yu.Ya. Simulation of the processes of structuring of copper nanoclusters in terms of the tight-binding potential, Journal of Experimental and Theoretical Physics, 2009, vol. 108, issue 5, pp. 784-799. DOI: 10.1134/S1063776109050070.
7. Gafner Yu.Ya., Goloven'ko Zh.V., Gafner S.L. Formation of the structure of gold nanoclusters during crystallization, Journal of Experimental and Theoretical Physics, 2013, vol. 116, issue 2, pp. 252-265. DOI: 10.1134/S106377611302009X.
8. Gafner S.L., Redel' L.V., Goloven'ko Zh.V. et al. Structural transitions in small nickel clusters, Journal of Experimental and Theoretical Physics Letters, 2009, vol. 89, issue7, pp. 364-369. DOI: 10.1134/S0021364009070121.
9. Sdobnyakov N.Yu., Sokolov D.N., Bazulev A.N. et al. Relation between the size dependences of the melting and crystallization temperatures of metallic nanoparticles, Russian Metallurgy (Metally), 2013, no. 2, pp. 100-105. DOI: 10.1134/S0036029513020110.
10. Samsonov V.M., Sdobnyakov N.Yu., Talyzin I.V. et al. Complex approach to atomistic simulation of the size dependences of the temperature and the heat of melting of Co nanoparticles: molecular dynamics and Monte Carlo method, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2019, vol. 13, no. 6, pp. 1185-1188. DOI: 10.1134/S1027451019060478.
11. Poletaev G.M., Sitnikov A.A., Yakovlev V.I., Filimonov V. Yu. Melting point of Ti, Ti3Al, TiAl, and TiAl3 nanoparticles versus their diameter in vacuum and liquid aluminum: molecular dynamics investigation, Journal of Experimental and Theoretical
Physics, 2022, vol. 134, issue2, pp. 183-187. DOI: 10.1134/S1063776122010095.
12. Ivlev V.I. Temperatura plavleniya malykh chastits v modeli s parametrom Lindemana [Melting temperature of small particles in a model with the Lindemann parameter], Fizika tverdogo tela [Solid State Physics], 1991, vol. 33, issue 5, pp. 1610-1612. (In Russian).
13. Heermann D. Computer Simulation Methods in Theoretical Physics, 2nd ed. Berlin, Heidelberg, Springer-Verlag, 1990, XII, 145 p. DOI: 10.1007/978-3-642-75448-7.
14. Pan’kin N.A., Smolanov N.A., Kashapov N.F. Vvedenie v metod klassicheskoj molekulyarnoj dinamiki [Introduction to the method of classical molecular dynamics], Kazan', Kazan University Publ., 2022, 156 p. (In Russian).
15. Medina J., de Coss R., Canto G., Tapia A. Structural, energetic and magnetic properties of small Tin (n = 2−13) clusters: a density functional study, The European Physical Journal B, 2010, vol. 76, issue 3, pp. 427-433. DOI: 10.1140/epjb/e2010-00214-3.
16. LAMMPS Molecular dynamics simulator. Available at: www.url: (accessed 15.05.2022).
17. Nosé S.A. Molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, vol. 52, issue 2, pp. 255-268. DOI: 10.1080/00268978400101201.
18. Verlet L. Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967. vol. 159, issue 1, pp. 98-103. DOI: 10.1103/PhysRev.159.98.
19. Mendelev M.I., Underwood T.L., Ackland G.J. Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium, Journal of Chemical Physics, 2016, vol. 145, issue 15. pp. 154102-1-154102-11. DOI: 10.1063/1.4964654.
20. Interatomic potentials repository. Available at: (accessed 05.08.2021). DOI: 10.18434/m37.
21. OVITO – Open Visualization Tool – Scientific visualization and analysis software for atomistic simulation data. Available at: www.url:https://www. (accessed 05.08.2022).
22. Honeycutt J.D., Andersen H.C. Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters, Journal of Chemical Physics, 1987, vol. 91, issue 19, pp. 4950-4963. DOI: 10.1021/j100303a014.
23. Samsonov V.M., Bembel A.G., Shakulo O.V. O fazovykh perekhodakh pervogo roda v klasterakh nikelya [On first-order phase transitions in nickel clusters], Vestnik Tverskogo gosudarstvennogo universiteta. Seriya «Fizika» [Bulletin of the Tver State University. Series "Physics"], 2011, issue 13, pp. 82-93. (In Russian).
24. Samsonov V.M., Demenkov D.E., Karacharov V.I., Bembel' A.G. Fluctuation approach to the problem of thermodynamics' applicability to nanoparticles, Bulletin of the Russian Academy of Sciences: Physics, 2011, vol. 75, issue 8, pp. 1073-1077. DOI: 10.3103/S106287381108034X.
25. Pan'kin N.A. Izmenenie struktury nanoklasterov titana pri termicheskom vozdejstvii: molekulyarno-dinamicheskoe modelirovanie [Changes in the structure of titanium nanoclusters under thermal exposure: molecular dynamics modeling], Fiziko-khimicheskiye aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 580-592. (In Russian).
26. Fizicheskie velichiny. Spravochnik [Physical quantities. Handbook], ed. by I.S. Grigor'eva, E.Z. Mejlikhova, Moscow, Energiya Publ., 1991, 1232 p.
27. Sdobnyakov N.Yu., Myasnichenko V.S., Cheng-Hung San, et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
28. Sdobnyakov N.Yu., Samsonov V.M., Myasnichenko V.S. et al. Effect of cooling rate on structural transformations in Ti-Al-V nanoalloy: molecular dynamics study, Journal of Physics: Conference Series, 2021, vol. 2052, art. № 012038, 4 p. DOI: 10.1088/1742-6596/2052/1/012038.

Content |