Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Construction of a lattice Monte Carlo model of layer-by-layer growth of bimetallic nanoparticles

V.S. Myasnichenko, D.N. Sokolov, A.N. Bazulev, N.I. Nepsha, P.M. Ershov, N.Yu.. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2022.14.468

Original article

Abstract: Based on the Metropolis software, a lattice statistical model of the layer-by-layer growth of bimetallic nanoparticles has been implemented. As an example, this paper analyzes two types of lattices: fcc and decahedral. On their basis, the growth of free Au-Ag nanoparticles is modeled in three modes that differ in growth stages: 3, 4, or 7 bimetallic layers are added. The interatomic interaction is set by the tight-binding potential, however, the constructed model does not exclude the possibility of using other modifications of the proven many-particle potentials. The change in the specific potential energy of entire nanoparticles and gold atoms during layer-by-layer growth is analyzed. The dependence of the number of mixed bonds on the layer number is studied for the entire nanoparticle and for the gold subsystem.

Keywords: computer experiment, Monte Carlo method, Metropolis scheme, layer-by-layer growth, bimetallic nanoparticles, mixed bonds

  • Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University
  • Denis N. Sokolov – Ph. D., Researcher, Tver State University
  • Anatolii N. Bazulev – Ph. D., Docent, General Physics Department, Tver State University
  • Nikita I. Nepsha – 2nd year postgraduate student, Tver State University
  • Pavel M. Ershov – Researcher, General Physics Department, Tver State University
  • Nickolay Yu.. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Myasnichenko, V.S. Construction of a lattice Monte Carlo model of layer-by-layer growth of bimetallic nanoparticles / V.S. Myasnichenko, D.N. Sokolov, A.N. Bazulev, N.I. Nepsha, P.M. Ershov, N.Yu.. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 468-478. DOI: 10.26456/pcascnn/2022.14.468. (In Russian).

Full article (in Russian): download PDF file

References:

1. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Monte Carlo approach for modeling and optimization of one-dimensional bimetallic nanostructures, Lecture Notes in Computer Science. Conference paper: International Conference on Numerical Methods and Applications, 20-24 August 2018, Borovets, Bulgaria, 2019, vol. 11189, pp. 133-141. DOI: 10.1007/978-3-030-10692-8_15.
2. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Structural instability of gold and bimetallic nanowires using Monte Carlo simulation, Recent Advances in Computational Optimization. Studies in Computational Intelligence, ed. by S. Fidanova. Cham, Springer, 2020, vol. 838, pp. 133-145. DOI: 10.1007/978-3-030-22723-4_9.
3. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [Study of the thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer modeling: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
4. Myshlyavcev A.V., Stishenko P.V. Modifikaciya algoritma Metropolisa dlya modelirovaniya metallicheskih nanochastic [Modification of the Metropolis algorithm for simulation metal nanoparticles], Omskij nauchnyj vestnik [Omsk Scietntific Bulletin], 2012, no. 1 (107), pp. 21-25. (In Russian).
5. Zhu R. Atomistic simulation of nanostructured materials. Doctoral dissertation. Akron, University of Akron, 2006, 130 p.
6. White R., Welland M.E. Kinetic Monte Carlo simulation of vapor-liquid-solid nanostructure growth, Journal of Applied Physics, 2007, vol. 102, issue 10, pp. 104301-1-104301-7. DOI: 10.1063/1.2805641.
7. Hadjisavvas G.C., Kelires P.C. Advances in Monte Carlo simulations of nanostructured materials, Computer Simulation Studies in Condensed-Matter Physics XVIII: proceedings of the Eighteenth Workshop, Athens, GA, USA, March 7-11, 2005, ed. by D.P. Landau, S.P. Lewis, H.-B. Schüttler. Berlin, Heidelberg, Springer, 2007, vol. 105, pp. 58-70. DOI: 10.1007/978-3-540-32640-3_8.
8. Viswanathan V., Wang F., Pitsch H. Monte Carlo-based approach for simulating nanostructured catalytic and electrocatalytic systems, Computing in Science & Engineering, 2012, vol. 14, issue 2, pp. 60-69. DOI: 10.1109/MCSE.2011.40.
9. Metropolis N., Ulam S. The Monte Carlo method, Journal of the American Statistical Association, 1949, vol. 44, issue 247, pp. 335-341. DOI: 10.1080/01621459.1949.10483310.
10. Krasil'nikov M.P. Obrazovanie vtorichnoj struktury nanochastitsy v reshyotochnoj imitatsionnoj modeli [The formation of secondary structure of nanoparticle in lattice simulation], Vestnik Tuvinskogo gosudarstvennogo universiteta. №3 Tekhnicheskie i fiziko-matematicheskie nauki [Bulletin of the Tuva State University. №3 Technical and physical and mathematical sciences], 2014, no. 3 (22), pp. 149-154. (In Russian).
11. Krasilnikov M.P. Potentsial Morze v imitatsionnoj reshetochnoj modeli relaksatsii metallicheskoj nanochastitsy [Morse potential for the simulation of the relaxation of a metal nanoparticle on simple cubic lattice], Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta [Bulletin of Tomsk State Pedagogical University], 2013, no. 8 (136), pp. 170-174. (In Russian).
12. Gupta R.P. Lattice relaxation at a metal surface, Physical Review B, 1981, vol. 23, issue 12, pp. 6265-6270. DOI: 10.1103/PhysRevB.23.6265.
13. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
14. Urzúa E., Gonzalez-Torres F., Beltrán V. et al. Ag@Au bimetallic nanoparticles: an easy and highly reproducible synthetic approach for photocatalysis, Nanoscale Advances, 2022, vol. 4, issue 22, pp. 4789-4797. DOI: 10.1039/d2na00539e.
15. Arif I., Agrahari G., Gautam A.K., Chatterjee A. Inferring layer-by-layer composition in Au-Ag nanoparticles using a combination of X-ray photoelectron spectroscopy and Monte Carlo simulations, Surface Science, 2019, vol. 691, issue 18, art. no. 121503, 10 p. DOI: 10.1016/j.susc.2019.121503.
16. Sokolov D.N., Sdobnyakov N.Yu., Savina K.G., Kolosov A.Yu., Myasnichenko V.S. Novye vozmozhnosti vysokoproizvoditel'nykh raschetov nanosistem s ispol'zovaniem programmnogo obespecheniya Metropolis [New opportunities for high-performance simulations of nanosystem using Metropolis software], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 624-638. DOI: 10.26456/pcascnn/2021.13.624.
17. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
18. Myasnichenko V.S. Sdobnyakov N.Yu., Ershov P.M. et al. Modelirovanie poslojnogo rosta klasterov i nanosplavov metodom Monte-Karlo [Layer-by-layer growth simulation of clusters and nanoalloys by the Monte Carlo method], Proceedings of the International Conference «FizikA.SPb», Sankt-Peterburg, October, 17-21, 2022. Saint Petersburg, POLITEKh-PRESS Publ., 2022, pp. 88-90. (In Russian).
19. Bezrodnyy D.A., Filimonov S.N. Komp'yuternoe modelirovanie poslojnogo rosta grani 3D-ostrovka [Computer simulations of the layer-by-layer growth of 3D-island facets], Izvestiya vuzov. Fizika [Russian Physics Journal], 2013, vol. 56, no. 8/3, pp. 156-158. (In Russian).
20. Sdobnyakov N.Yu., Samsonov V.M., Kolosov A.Yu. et al. To the problem of stability/instability of bimetallic structures Co (core)/ Au (shell) and Au (core)/ Co (shell): atomistic simulation, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 520-534. DOI: 10.26456/pcascnn/2019.11.520. (In Russian).
21. Samsonov V.M., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Factors of the stability/instability of bimetallic core–shell nanostructures, Bulletin of the Russian Academy of Sciences: Physics, 2021, vol. 85, issue 9, pp. 950-954. DOI: 10.3103/S1062873821090240.

⇐ Prevoius journal article | Content | Next journal article ⇒