Electron-stimulated desorption of rubidium atoms adsorbed on the surface of gold-rubidium intermetallide
Yu..A. Kuznetsov, M.N. Lapushkin
Ioffe Institute
DOI: 10.26456/pcascnn/2022.14.450
Original article
Abstract: The calculation of the density of states of various thicknesses of the 2D-layers of the intermetallic compound RbAu has been carried out. 2D-layers of intermetallic compound RbAu are simulated by supercells RbAu (111) 2×2×2. For a monolayer 2D-layer of an intermetallic compound RbAu the presence of a bandgap with a width of 2,70 eV has been established. An increase in the thickness of the 2D-layers of the intermetallic compound RbAu to three monolayers showed a decrease in the bandgap to 0,80 eV. A further increase in the thickness of the 2D-layers of the intermetallic compound RbAu leads to the disappearance of the band gap, which indicates a semiconductor-metal transition for the 2D-layer of the intermetallic compound RbAu with a thickness of four monolayers. The valence band of the 2D-layer of the intermetallic compound RbAu is formed mainly by Au 5d
electrons, with an insignificant contribution from Au 6s and Au 6p electrons. The conduction band of RbAu is formed mainly by Au 6p electrons with an insignificant contribution of electrons Rb 5s.
Keywords: electronic structure, ab initio calculation, intermetallic compounds, rubidium auride, 2D-layer
- Yurij A. Kuznetsov – Researcher, Ioffe Institute
- Mikhail N. Lapushkin – Ph. D., Docent, Senior Researcher, Ioffe Institute
Reference:
Kuznetsov, Yu..A. Electron-stimulated desorption of rubidium atoms adsorbed on the surface of gold-rubidium intermetallide / Yu..A. Kuznetsov, M.N. Lapushkin // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 450-457. DOI: 10.26456/pcascnn/2022.14.450. (In Russian).
Full article (in Russian): download PDF file
References:
1. Jansen M. The chemistry of gold as an anion, Chemical Society Reviews, 2008, vol. 37, issue 9, pp. 1826-1835. DOI: 10.1039/b708844m.
2. Spicer W.E. Photoemission and band structure of the semiconducting compound СsAu, Physical Review, 1962, vol. 125, issue 4, pp. 1297-1299. DOI: 10.1103/PhysRev.125.1297.
3. Ageev V.N., Kuznetsov Yu.A. Electron-stimulated desorption of sodium atoms from sodium layers adsorbed on a gold film, Physics of the Solid State, 2008, vol. 50, issue 2, pp. 379-382. DOI: 10.1134/S1063783408020261.
4. Kuznetsov Yu.A., Lapushkin M.N. Elektronno-stimulirovannaya desorbtsiya atomov tseziya, adsorbirovannykh na poverkhnosti zolota [Electron-stimulated desorption of potassium atoms adsorbed on the surface of gold], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 836-844. DOI: 10.26456/pcascnn/2020.12.836. (In Russian).
5. Kuznetsov Yu.A., Lapushkin M.N. Elektronno-stimulirovannaya desorbtsiya atomov tseziya, adsorbirovannykh na poverkhnosti zolota [Electron-stimulated desorption of potassium atoms adsorbed on the surface of gold], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2015, issue 7, pp. 333-340. (In Russian).
6. Tinelli G.A., Holcomb D.F. NMR and structural properties of CsAu and RbAu, Journal of Solid State Chemistry, 1978, vol. 25, issue 2, pp. 157-168. DOI: 10.1016/0022-4596(78)90099-3.
7. Pelton A.D. The Au−Rb (gold-rubidium) system, Bulletin of Alloy Phase Diagrams, 1986, vol. 7, issue. 2, pp. 139-142. DOI: 10.1007/BF02881551.
8. Overhof H., Knecht J., Fischer R., Hensel F. Photoelectron spectroscopy studies and calculation of the energy bands of CsAu and RbAu, Journal of Physics F: Metal Physics, 1978, vol. 8, no. 7, pp. 1607-1616. DOI: 10.1088/0305-4608/8/7/032.
9. Aycibin M., Dogan E.K., Gulebaglan S.E. et al. Physical properties of RbAu compound, Computational Condensed Matter, 2014, vol. 1, pp. 32-37. DOI: 10.1016/j.cocom.2014.10.004.
10. Grosch G.H., Range K.-J. Chemical trends in gold alkali alloys: A density functional theory study on stability and charge transfer Part I: Gold alkali alloys of the formula MAu, Journal of Alloys and Compounds, 1996, vol. 233, issue 1-2, pp. 30-38. DOI: 10.1016/0925-8388(96)80030-2.
11. Sarmiento-Perez R., Cerqueira T.F.T., Valencia-Jaime I., et al. Sodium-gold binaries: novel structures for ionic compounds from an ab initio structural search, New Journal of Physics, 2013, vol. 15, art. no 115007, 9 p. DOI: 10.1088/1367-2630/15/11/115007.
12. Koenig C., Christensen N.E., Kollar J. Electronic properties of alkali-metal – gold compounds, Physical Review B, 1984, vol. 29, issue 12, pp. 6481-6488. DOI: 10.1103/PhysRevB.29.6481.
13. Watson R.E., Weinert M. Charge transfer in gold–alkali-metal systems, Physical Review B, 1994, vol. 49, issue 11, pp. 7148-7154. DOI: 10.1103/PhysRevB.49.7148.
14. Giannozz, P., Baroni S., Bonini N. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 2009, vol. 21, no. 39, art. no. 395502, 19 p. DOI: 10.1088/0953- 8984/21/39/395502.
15. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple, Physical Review Letters, 1996, vol. 77, issue 18, pp. 3865-3868. DOI: 10.1103/physrevlett.77.3865.
16. Troullier N., Martins J.L. Efficient pseudopotentials for plane-wave calculations, Physical Review B, 1991, vol. 43, issue 3, pp. 1993-2006. DOI: 10.1103/physrevb.43.1993.
17. Nishihara S. BURAI 1.3 A GUI of Quantum ESPRESSO. Available at: https://nisihara.wixsite.com/burai (accessed 31.05.2022).
18. Kuznetsov Yu.A., Lapushkin M.N. Raschety elektronnoj struktury 2D-sloev intermetallida NaAu [Calculation of electronic structure of 2D NaAu intermetallic layers], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 475-482. DOI: 10.26456/pcascnn/2021.13.475.