Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Investigation of welding process of vitrimer-based material: meso-scale simulation

P.V. Komarov1,2, M.D. Malyshev1,2

1 Tver State University
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences

DOI: 10.26456/pcascnn/2022.14.435

Original article

Abstract: A self-healing epoxy material is considered, based on bisphenol A diglycidyl ether and atricarboxylic fatty acid hardener, belonging to a new class of polymers called vitrimers. The res toration of the integrity of such systems in the case of a damage occurs due to the exchange reaction of covalent bonds between the comonomers forming a polymer network. In our previous work, we have developed a model of this material based on the method of reactive dissipative particle dynamics. In this work, we apply our model to study the welding process of vitrimer samples cut into two parts. The control of the integrity of the structure of the systems was carried out using a topological analysis by calculating the distributions over the lengths of simple cycles and the density of the number of load-bearing circuits. It has been shown that the rate of restoration of the integrity of the systems is determined by the concentration of the catalyst and the degree of crosslinking of the polymer. The results obtained also indicate that in the case of a high degree of crosslinking of the polymer, as well as a low catalyst concentration, the structure of the system is highly inhomogeneous.

Keywords: vitrimers, network polymers, mesoscopic modeling, dissipative particle dynamics, bond exchange reaction

  • Pavel V. Komarov – Dr. Sc., Docent, General Physics Department, Tver State University , Leading Researcher Laboratory of Physical Chemistry of Polymers A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
  • Maxim D. Malyshev – ассистент кафедры физической химии, Tver State University, младший научный сотрудник лаборатории компьютерного моделирования макромолекул A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences


Komarov, P.V. Investigation of welding process of vitrimer-based material: meso-scale simulation / P.V. Komarov, M.D. Malyshev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 435-449. DOI: 10.26456/pcascnn/2022.14.435. (In Russian).

Full article (in Russian): download PDF file


1. Pandey J.K., Kumar A.P., Misra M. Recent advances in biodegradable nanocomposites, Journal of Nanoscience and Nanotechnology, 2005, vol. 5, issue 4, pp. 497-526. DOI: 10.1166/jnn.2005.111.
2. Adeosun S.O., Lawal G.I., Balogun S.A., Akpan E.I. Review of green polymer nanocomposites, Journal of Minerals & Materials Characterization & Engineering, 2012, vol. 11, issue 4, pp. 483-514. DOI: 10.4236/jmmce.2012.114028.
3. Abioye A.A., Fasanmi O.O., Rotimi D.O. et al. Review of the development of biodegradable plastic from synthetic polymers and selected synthesized nanoparticle starches, Journal of Physics: Conference Series, 2019 vol. 1378, art. no. 042064, 9 p. DOI: 10.1088/1742-6596/1378/4/042064.
4. Capelot M., Unterlass M.M., Tournilhac F., Leibler L. Catalytic control of the vitrimer glass transition, ACS Macro Letters, 2012, vol. 1, issue 7, pp. 789-792. DOI: 10.1021/mz300239f.
5. Capelot M., Montarnal D., Tournilhac F., Leibler L. Metal-catalyzed transesterification for healing and assembling of thermosets, Journal of the American Chemical Society, 2012, vol. 134, issue 18, pp. 7664-7667. DOI: 10.1021/ja302894k.
6. Demongeot A., Mougnier S.J., Okada S. et al. Coordination and catalysis of Zn2+ in epoxy-based vitrimers, Polymer Chemistry, 2016, vol. 7, issue 27, pp. 4486-4493. DOI: 10.1039/C6PY00752J.
7. Hammer L., van Zee N.J., Renauld N. Dually crosslinked polymer networks incorporating dynamic covalent bonds, Polymers, 2021, vol. 13, issue 3, pp. 396-421. DOI: 10.3390/polym13030396.
8. Kolomiets E., Lehn J.-M. Double dynamers: molecular and supramolecular double dynamic polymers. Chemical Communication, 2005, vol. 2005, issue 5, pp. 1519-1521. DOI: 10.1039/B418899C.
9. Malyshev M.D., Komarov P.V. Mezoskopicheskoe modelirovanie vitrimera na osnove diglicidilovogo efira bisfenola A [Mesoscopic modeling of a vitrimer based on diglycidyl ether bisphenol A], Vestnik TvGU. seriya: Himiya [Herald of Tver State University. Series: Chemistry], 2021, vol. 4, issue 46, pp. 105-117. DOI: 10.26456/vtchem2021.4.13. (In Russian)
10. Groot R.D., Warren P.B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation, The Journal of Chemical Physics, 1997, vol. 107, issue 11, pp. 4423-4435. DOI: 10.1063/1.474784.
11. Gavrilov A.A., Komarov P.V., Khalatur P.G. Thermal properties and topology of epoxy networks: a multiscale simulation methodology, Macromolecules, 2015, vol. 48, issue 1, pp. 206-212. DOI: 10.1021/ma502220k.
12. Komarov P.V., Khalatur P.G., Khokhlov A.R. Magnetoresponsive smart nanocomposites with highly cross-linked polymer matrix, Polymer for Advanced Technologies, 2021, vol. 32, issue 10, pp. 3922-3933. DOI: 10.1002/pat.5354.
13. Sun H. Ab initio calculations and force field development for computer simulation of polysilanes, Macromolecules, 1995, vol. 28, issue 3, pp. 701-712. DOI: 10.1021/MA00107A006.
14. Flory P.J. Thermodynamics of high polymer solutions, Journal of Chemical Physics, 1941, vol. 9, issue 8, pp. 660-664. DOI: 10.1063/1.1723621.
15. Huggins M.L. Solutions of long chain compounds, Journal of Chemical Physics, 1941, vol. 9, issue. 5, pp. 440-440. DOI: 10.1063/1.1750930.
16. Kriksin Y.A., Khalatur P.G., Neratova I.V. et al. Directed assembly of block copolymers by sparsely patterned substrates, Journal of Physical Chemistry C, 2011, vol. 115, issue 51, pp. 25185-25200. DOI: 10.1021/JP204629K.
17. Olejnik O., Masek A., Szynkowska-Józwik M.I. Self-healable biocomposites crosslinked with a combination of silica and quercetin, Materials, 2021, vol. 14, issue 14, art. no. 4028, 14 p. DOI: 10.3390/ma14144028.
18. Paolillo S., Bose R.K., Santana M.H., Grande A.M. Intrinsic self-healing epoxies in polymer matrix composites (PMCs) for aerospace applications, Polymers, 2021, vol. 13, issue 2, art. no. 201, 32 p. DOI: 10.3390/polym13020201.
19. Buaksuntear K., Limarun P., Suethao S., Smitthipong W. Non-covalent interaction on the self-healing of mechanical properties in supramolecular polymers, International Journal of Molecular Sciences, 2022, vol. 23, issue 13, art. no. 6902, 30 p. DOI: 10.3390/ijms23136902.
20. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V. «Lomonosov»: Supercomputing at Moscow state university, Contemporary high performance computing: from petascale toward exascale, ed. by J.S. Vetter. London, CRC Press, 2013, chapter 2, pp. 283-307. DOI: 10.1201/9781351036863.

⇐ Prevoius journal article | Content | Next journal article ⇒