Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Regularities of structural transformations in bimetallic Pd-Pt nanoparticles

A.Yu.. Kolosov, E.S. Mitinev, A.A. Taktarov, V.S. Myasnichenko, A.N. Bazulev, N.Yu.. Sdobnyakov

Tver State University

DOI: 10.26456/pcascnn/2022.14.419

Original article

Abstract: The processes of melting and crystallization of bimetallic Pt- and Pd-based nanoparticles have been studied by the method of molecular dynamics. The possibility of obtaining stable nanoparticles containing 3000 and 4000 atoms in the temperature range from 500 K to 1600 K is established. The concept about the possibility of fixing the temperatures of starting and ending of the phase transition for melting and crystallization is confirmed which was put forward earlier for monometallic platinum and palladium nanoparticles. The analysis shows that during the cooling of Pd-Pt nanoparticles with an initially uniform distribution of components, formation of a mixed structure with a surface monolayer of Pd atoms is observed. The possibility of structural segregation in bimetallic Pd-Pt nanoparticles containing 3000 and 4000 atoms is shown. At the same time, these two sizes correspond to different scenarios. For bimetallic nanoparticles with 3000 atoms, local zones are mainly polyhedral, and for bimetallic nanoparticles containing 4000 atoms, formation of extended band structures is observed.

Keywords: molecular dynamics method, bimetallic nanoparticles, platinum, palladium, segregation, structural transformations, stability

  • Andrey Yu.. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Egor S. Mitinev – 1st year graduate student, Tver State University
  • Anton A. Taktarov – 1st year graduate student, General Physics Department, Tver State University
  • Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University
  • Anatolii N. Bazulev – Ph. D., Docent, General Physics Department, Tver State University
  • Nickolay Yu.. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University

Reference:

Kolosov, A.Yu.. Regularities of structural transformations in bimetallic Pd-Pt nanoparticles / A.Yu.. Kolosov, E.S. Mitinev, A.A. Taktarov, V.S. Myasnichenko, A.N. Bazulev, N.Yu.. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 419-434. DOI: 10.26456/pcascnn/2022.14.419. (In Russian).

Full article (in Russian): download PDF file

References:

1. Kim C., Fujigaya T., Nakashima N. Characteristics of Pd-Pt nanoparticles with core-shell structure on polybenzimidazole-wrapped graphene for fuel cell electrocatalyst, ECS Meeting Abstracts, 2014, vol. MA2014-02, issue. F3-Polymer Electrolyte Fuel Cells 14 (PEFC 14), art. no. 1041. DOI: 10.1149/MA2014-02/21/1041.
2. Papandrew A.B., John S.St., Elgammal R.A. et al. Vapor-deposited Pt and Pd-Pt catalysts for solid acid fuel cells: short range structure and interactions with the CsH2PO4, Journal of The Electrochemical Society, 2016, vol. 163, issue 6, pp. F464-F469. DOI: 10.1149/2.0371606jes.
3. Babar N.-U.-A., Khan A. Hakkem A.S. et al. NiPd nano-alloy film as a promising low overpotential electrocatalyst for high activity water oxidation reaction, Journal of Environmental Chemical Engineering, 2022, vol. 10, issue 3, art. no. 107959. DOI: 10.1016/j.jece.2022.107959.
4. Feng T., Grass M.E., Zhang Y. et al. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles, Science, 2008, vol. 322, art. no. 5903, pp. 932-934. DOI: 10.1126/science.1164170.
5. Akbarzadeh H., Mehrjouei E., Shamkhali A.N. et al. New molecular insight into the stability of Ni-Pd hollow nanoparticles,
Inorganic Chemistry Frontiers, 2017, vol. 4, issue 10, pp. 1679-1690. DOI: 10.1039/C7QI00370F.
6. Samsonov V.M., Romanov A.A., Kartoshkin A.Yu. Talyzin I.V. Puytov V.V. Embedding functions for Pt and Pd: recalculation and verification on properties of bulk phases, Pt, Pd, and Pt-Pd nanoparticles, Applied Physics A, 2022, vol. 128, issue 9, art. no. 826, 14 p. DOI: 10.1007/s00339-022-05922-1.
7. LAMMPS Molecular Dynamics Simulator. Available at: www.url: http://lammps.sandia.gov. (accessed 15.09.2022).
8. Matveev A.V. Raschet ehnergii segregatsii atomov metallov v splavakh na osnove palladiya [Calculation of the metal atoms segregation energy in palladium-based alloys], Vestnik Omskogo universiteta [Bulletin of Omsk University], 2012, no. 2 (64), pp. 94-100. (In Russian).
9. Samsonov V.M., Sdobnyakov N.Yu., Bembel A.G., Sokolov D.N., Novozhilov N.V. Thermodynamic approach to the size dependence of the melting temperatures of films, Bulletin of the Russian Academy of Sciences. Physics, 2014, vol. 78, issue 8, pp. 733-736. DOI: 10.3103/S1062873814080310.
10. Vasilyev S.A., Romanov A.A. Izuchenie razmernykh zavisimostei temperatur plavleniya i kristallizatsii nanoklasterov platiny metodom molekulyarnoi dinamiki [Molecular dynamic study of size dependences of melting and crystallization temperatures of platinum nanoclusters], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 121-127. (In Russian). DOI: 10.26456/pcascnn/2017.9.121.
11. Samsonov V.M., Sdobnyakov N.Yu., Bembel A.G., Sokolov D.N., Novozhilov N.V. Thermodynamic approach to the size dependence of the melting temperatures of films, Bulletin of the Russian Academy of Sciences. Physics, 2014, vol. 78, issue 8, pp. 733-736. DOI: 10.3103/S1062873814080310.
12. Sdobnyakov N.Yu., Sokolov D.N., Bazulev A.N. et al. Relation between the size dependences of the melting and crystallization temperatures of metallic nanoparticles, Russian Metallurgy (Metally), 2013, no. 2, pp. 100-105. DOI: 10.1134/S0036029513020110.
13. Guisbiers G., Abudukelimu G., Hourlier D. Size-dependent catalytic and melting properties of platinum-palladium nanoparticles, Nanoscale Research Letters, 2011, vol. 6, art. no. 396, 5 p. DOI: 10.1186/1556-276X-6-396.
14. Sdobnyakov N.Yu., Sokolov D.N. Izuchenie termodinamicheskikh i strukturnykh kharakteristik nanochastits metallov v protsessakh plavleniya i kristallizatsii: teoriya i komp'yuternoe modelirovanie: monografiya [The study of thermodynamic and structural characteristics of metal nanoparticles in the processes of melting and crystallization: theory and computer simulation: monograph]. Tver, Tver State University Publ., 2018, 176 p. (In Russian).
15. Sdobnyakov N.Yu., Sokolov D.N., Myasnichenko V.S., Bazulev A.N. Raschet razmernykh zavisimostei teplot plavleniya i kristallizatsii nanochastits metallov [Саlculation of the heat of fusion and the heat of freezing size dependencies for metal nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2014, vol. 6, pp. 342-348. (In Russian).
16. Gupta R.P. Lattice relaxation at a metal surface, Physical Review B, 1981, vol. 23, issue 12, pp. 6265-6270. DOI: 10.1103/PhysRevB.23.6265.
17. Paz Borbón L.O. Computational studies of transition metal nanoalloys, Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag Publ., 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
18. Sdobnyakov N.Yu., Kolosov A.Yu., Bogdanov S.S. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh: monografiya [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems: monograph]. Tver, Tver State University Publ., 2021, 168 p. DOI: 10.26456/skb.2021.168. (In Russian).
19. Kolosov A.Yu. Modelirovanie protsessov koalestsentsii i spekaniya v mono- i bimetallicheskikh nanosistemakh [Simulation of the processes of coalescence and sintering in mono- and bimetallic nanosystems], Cand. phys.-math. sci. diss. Tver, Tver State University Publ., 2020, 200 p. (In Russian).
20. Cleri F., Rosato V. Tight binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
21. Massen C., Mortimer-Jones T.V., Johnston R.L. Geometries and segregation properties of platinum– palladium nanoalloy clusters, Journal of the Chemical Society, Dalton Transactions, 2002, issue 23, pp. 4375-4388. DOI: 10.1039/B207847C.
22. Vasilyev S.A., Romanov A.A., Vostrov N.V., Skopich V.L., Savina K.G. Izuchenie razmernykh zavisimostei teplot plavleniya i kristallizatsii nanoklasterov platiny i palladiya metodom molekulyarnoi dinamiki [Molecular dynamics study of size dependences of melting and crystallization heats of platinum and palladium nanoclusters], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, vol. 11, pp. 436-442. DOI: 10.26456/pcascnn/2019.11.436.
23. Sankaranarayanan S.K.R.S., Bhethanabotla V.R., Joseph B. Molecular dynamics simulation study of the melting and structural evolution of bimetallic Pd−Pt nanowires, Physical Review B, 2006, vol. 74, issue 15, pp. 155441-1-155441-12. DOI: 10.1103/PhysRevB.74.155441.
24. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
25. Palomares-Baez J.-P., Panizon E., Ferrando R. Nanoscale effects on phase separation, Nano Letters, 2017, vol. 17, issue 9, pp. 5394-5401. DOI: 10.1021/acs.nanolett.7b01994.
26. Bogdanov S., Samsonov V., Sdobnyakov N. et al. Molecular dynamics simulation of the formation of bimetallic core-shell nanostructures with binary Ni-Al nanoparticle quenching, Journal of Materials Science, 2022, vol. 57, issue 28, pp. 13467-13480. DOI: 10.1007/s10853-022-07476-2.
27. Perevezentsev V.N. The theory of evolution of the microstructure of superplastic alloys and ceramics, Superplasticity. 60 years after Pearson: proceedings of the conference organized on behalf of the Superplastic Forming Committee of the Manufacturing Division of the Institute of Materials and Held at the University of Manchester Institute of Science and Technology (UMIST), 7-8 December 1994, ed. by N. Ridley. London, CRC Press, 1995, pp. 51-59.
28. Grammatikopoulos P., Kioseoglou J., Galea A., et al. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles, Nanoscale, 2016, vol. 8, issue 18, pp. 9780-9790. DOI: 10.1039/C5NR08256K.

⇐ Prevoius journal article | Content | Next journal article ⇒