Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


To the problem of investigating the processes of structure formation in four-component nanoparticles

S.A. Veresov, K.G. Savina, A.D. Veselov, S.V. Serov, A.Yu.. Kolosov, V.S. Myasnichenko, N.Yu.. Sdobnyakov, D.N. Sokolov

Tver State University

DOI: 10.26456/pcascnn/2022.14.371

Original article

Abstract: Various types of configurations of the Au-Cu-Pd-Pt four-component nanosystem, including complex core-shell structures, have been studied. The Monte Carlo method was used as a simulation method, the interatomic interaction was described by the tight-binding potential, i.e. the Gupta potential. According to the results of a series of computer experiments, it was found that four-component nanoparticles of this system do not tend to form a core-shell structure, even though gold atoms have an increased surface segregation. The melting temperatures for the nanosystems under study have been determined. The obtained values are in the range from 1100 K to 1250 K and weakly depend on the composition of nanoparticles (the ratio of the number of atoms). A stoichiometric composition based on these metals was found, for which, during cooling, an FCC crystal structure with inclusions of the HCP phase is formed. However, no distinctive features in the nature of segregation for this stoichiometric composition have been established. All considered stoichiometric compositions in the studied temperature range were stable with respect to decomposition.

Keywords: Monte Carlo method, tight-binding potential, four-component nanoparticles, structure formation, melting temperature, stability

  • Sergey A. Veresov – 1st year postgraduate student, General Physics Department, Tver State University
  • Ksenia G. Savina – 2nd year graduate student, General Physics Department, Tver State University
  • Alexei D. Veselov – 4th year postgraduate student, General Physics Department, Tver State University
  • Sergei V. Serov – 4th year student, General Physics Department, Tver State University
  • Andrei Yu.. Kolosov – Ph. D., Researcher, General Physics Department, Tver State University
  • Vladimir S. Myasnichenko – Researcher, General Physics Department, Tver State University
  • Nickolay Yu.. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University
  • Denis N. Sokolov – Ph. D., Researcher, General Physics Department, Tver State University

Reference:

Veresov, S.A. To the problem of investigating the processes of structure formation in four-component nanoparticles / S.A. Veresov, K.G. Savina, A.D. Veselov, S.V. Serov, A.Yu.. Kolosov, V.S. Myasnichenko, N.Yu.. Sdobnyakov, D.N. Sokolov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 371-382. DOI: 10.26456/pcascnn/2022.14.371. (In Russian).

Full article (in Russian): download PDF file

References:

1. Yin H.-J., Zhou J.-H., Zhang Y.-W. Shaping well-defined noble-metal-based nanostructures for fabricating high-performance electrocatalysts: advances and perspectives, Inorganic Chemistry Frontiers, 2019, vol. 6, issue 10, pp. 2582-2618. DOI: 10.1039/C9QI00689C.
2. Liao T.-W., Yadav A., Ferrari P. Composition-tuned Pt-skinned PtNi bimetallic clusters as highly efficient methanol dehydrogenation catalysts, Chemistry Material, 2019, vol. 31, issue 24, pp. 10040-10048. DOI: 10.1021/acs.chemmater.9b02824.
3. Samsonov V.M., Romanov A.A., Kartoshkin A.Yu., Talyzin I.V., Puytov V.V. Embedding functions for Pt and Pd: recalculation and verification on properties of bulk phases, Pt, Pd, and Pt–Pd nanoparticles, Applied Physics A, 2022, vol. 128, issue 9, art. № 826, 14 p. DOI: 10.1007/s00339-022-05922-1.
4. Koo W.-T., Millstone J.E., Weiss P.S., Kim I.-D. The design and science of polyelemental nanoparticles, ACS Nano, 2020, vol. 14, issue 6, pp. 6407-6413. DOI: 10.1021/acsnano.0c03993.
5. Yao Y., Huang Z., Xie P. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science, 2018, vol. 359, issue 6383, pp. 1489-1494. DOI: 10.1126/science.aan5412.
6. Ma S.Y., Li H.H., Hu B.C. et al. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity, Journal of the American Chemical Society, 2017, vol. 139, issue 16, pp. 5890-5895. DOI: 10.1021/jacs.7b01482.
7. Mazumder V., Chi M., More K.L., Sun S. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles, Angewandte Chemie - International Edition, 2010, vol. 49, issue 49, pp. 9368-9372. DOI: 10.1002/anie.201003903.
8. Jeon M.K., Lee K.R., Jeon H.J. et al. Quaternary Pt2Ru1Fe1M1/C (M=Ni, Mo, or W) catalysts for methanol electro-oxidation reaction. Korean Journal of Chemical Engineering, 2015, vol. 32, issue 2, pp. 206-215. DOI: 10.1007/s11814-014-0186-0.
9. Daw M.S., Chandross M. Sluggish diffusion in random equimolar FCC alloys, Physical Review Materials, 2021. vol. 5, issue 4, pp. 043603-1-043603-17. DOI: 10.1103/PhysRevMaterials.5.043603.
10. Soltani N., Rahman J.U., Carvalho P.A., et al. From quaternary to senary high entropy antimonide nanoparticles by a facile and scalable thermal treatment method, Materials Research Bulletin, 2022, vol. 153, art. no. 111873, 11 p. DOI: 10.1016/j.materresbull.2022.111873.
11. Myasnichenko V., Kirilov L., Mikhov R., Fidanova S., Sdobnyakov N. Simulated annealing method for metal nanoparticle structures optimization, Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, ed. by K. Georgiev, M. Todorov, I. Georgiev, 2019, vol. 793, pp. 277-289. DOI: 10.1007/978-3-319-97277-0_23.
12. Myasnichenko V., Sdobnyakov N., Kirilov L., Mikhov R., Fidanova S. Monte Carlo approach for modeling and optimization of one-dimensional bimetallic nanostructures, Lecture Notes in Computer Science. Conference paper: International Conference on Numerical Methods and Applications, 20-24 August 2018, Borovets, Bulgaria, 2019, vol. 11189, pp. 133-141. DOI: 10.1007/978-3-030-10692-8_15.
13. Lu X.-Z., Shao G.-F., Xu L.-Y. et al. Structural optimization and segregation behavior of quaternary alloy nanoparticles based on simulated annealing algorithm, Chinese Physics B, 2016, vol. 25, no. 5, pp. 053601-1-053601-8. DOI: 10.1088/1674-1056/25/5/053601.
14. Sdobnyakov N.Yu., Myasnichenko V.S., San C.-H., et al. Simulation of phase transformations in titanium nanoalloy at different cooling rates, Materials Chemistry and Physics, 2019, vol. 238, art. no 121895, 9 p. DOI: 10.1016/j.matchemphys.2019.121895.
15. Samsonov V.M., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Factors of the stability/instability of bimetallic core–shell nanostructure, Bulletin of the Russian Academy of Sciences: Physics, 2021, vol. 85, issue 9, pp. 950-954. DOI: 10.3103/S1062873821090240.
16. Sdobnyakov N.Yu., Samsonov V.M., Kolosov A.Yu. et al. To the problem of stability/instability of bimetallic structures Co (core)/ Au(shell) and Au (core)/ Co (shell): atomistic simulation, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2019, issue 11, pp. 520-534. DOI: 10.26456/pcascnn/2019.11.520. (In Russian).
17. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu., Samsonov M.V. Prediction of segregation in binary metal nanoparticles: thermodynamic and atomistic simulations, Physics of Metals and Metallography, 2019, vol. 120, issue 6, pp. 578-583. DOI: 10.1134/S0031918X19060115.
18. Sokolov D.N., Sdobnyakov N.Yu., Kolosov A.Yu., Ershov P.M., Bogdanov S.S. Metropolis. Certificate RF, no. 2019661915, 2019. (In Russian).
19. Metropolis N., Ulam S. The Monte Carlo method, Journal of the American Statistical Association, 1949, vol. 44, issue 247, pp. 335-341. DOI: 10.1080/01621459.1949.10483310.
20. Gupta R.P. Lattice relaxation at a metal surface, Physical Review B, 1981, vol. 23, issue 12, pp. 6265-6270. DOI: 10.1103/PhysRevB.23.6265.
21. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys, Physical Review B, 1993, vol. 48, issue 1, pp. 22-33. DOI: 10.1103/PhysRevB.48.22.
22. Paz Borbón L.O. Computational studies of transition metal nanoalloys. Doctoral Thesis accepted by University of Birmingham, United Kingdom. Berlin, Heidelberg, Springer-Verlag, 2011, 155 p. DOI: 10.1007/978-3-642-18012-5.
23. Bogdanov S., Samsonov V., Sdobnyakov N. et al. Molecular dynamics simulation of the formation of bimetallic core-shell nanostructures with binary Ni–Al nanoparticle quenching, Journal of Materials Science, 2022, vol. 57, issue 28, pp. 13467-13480. DOI: 10.1007/s10853-022-07476-2.
24. Myasnichenko V.S., Sdobnyakov N.Yu., Kolosov A.Yu. et al. Modeling of processes of structure formation in bimetallicnanoalloys of different composition, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2017, issue 9, pp. 323-329. DOI: 10.26456/pcascnn/2017.9.323. (In Russian).
25. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Modelling and Simulation in Materials Science and Engineering, 2010, vol. 18, issue 1, pp. 015012-1-015012-7. DOI: 10.1088/0965-0393/18/1/015012.
26. Mendoza-Pérez R., Guisbiers G. Bimetallic Pt–Pd nano-catalyst: size, shape and composition matter, Nanotechnology, 2019, vol. 30, no. 30, art. no. 305702, 31 p. DOI: 10.1088/1361-6528/ab1759.
27. Kolosov A.Yu., Mitinev E.S., Taktarov A.A., Myasnichenko V.S., Bazilev A.N., Sdobnyakov N.Yu. Zakonomernosti strukturnykh prevrashchenij v bimetallicheskikh nanochastitsakh Pd-Pt [Regularities of structural transformations in bimetallic Pd-Pt nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2022, issue 14, pp. 419-434. DOI: 10.26456/pcascnn/2022.14.419. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒