Structure and dielectric properties of a layered composite of barium titanate – barium ferrite
O.V. Malyshkina, G.S. Shishkov, A.I. Ivanova
Tver State University
DOI: 10.26456/pcascnn/2022.14.194
Original article
Abstract: The paper presents the results of a study of the influence of a constant magnetic field on the dispersion of the complex permittivity of a layered composite (connectivity 2-2) based on barium titanate – barium ferrite. It is shown that in the manufacture of a magnetoelectric composite of barium titanate – barium ferrite with a connectivity of 2-2, a strong diffusion of iron appears into the barium titanate ceramic layer at the interface between the two materials. It was found that iron penetrates evenly, with random deviations, and no exponential decline as iron enters into barium titanate is observed. It has been established that a constant magnetic field does not affect the dielectric characteristics in an alternating electric field at frequencies above 1600 Hz. At lower frequencies, annealing in the paraelectric phase increases the resistance of the sample, and subsequent exposure to a constant magnetic field leads to its decrease. It was revealed that changing the type of connectivity of the magnetoelectric composite from 0-3 to 2-2 adds additional, smaller, resonance and
antiresonance peaks in the study of piezoelectric properties by the resonance-antiresonance method. At the same time, the samples have sufficient values of the piezoelectric modulus for practical application (d31 > 40·10-12 C/N; d33 > 120·10-12 C/N).
Keywords: multiferroic, barium ferrite, barium titanate, magneto-electric composite, piezoelectric ceramic structure
- Olga V. Malyshkina – Dr. Sc., Full Professor, Professor of the Department of Computer Security and Mathematical Control Methods, Tver State University
- Gregori S. Shishkov – 4th year postgraduate student, Tver State University
- Alexandra I. Ivanova – Ph. D., Docent, Applied Physics Department, Tver State University
Reference:
Malyshkina, O.V. Structure and dielectric properties of a layered composite of barium titanate – barium ferrite / O.V. Malyshkina, G.S. Shishkov, A.I. Ivanova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 194-202. DOI: 10.26456/pcascnn/2022.14.194. (In Russian).
Full article (in Russian): download PDF file
References:
1. Smolenskii G.A., Chupis I.E. Ferroelectromagnets, Physics-Uspekhi, 1982, vol. 25, issue 7, pp. 475-493. DOI: 10.1070/PU1982v025n07ABEH004570.
2. Zvezdin A.K., Pyatakov A.P. Inhomogeneous magnetoelectric interaction in multiferroics and related new physical effects, Physics-Uspekhi, 2009, vol. 179, issue 8, pp. 845-851. DOI: 10.3367/UFNe.0179.200908i.0897.
3. Kleemann W. Multiferroic and magnetoelectric nanocomposites for data processing, Journal of Physics D: Applied Physics, 2017, vol. 50, no. 22, art. no. 223001, 13 p. DOI: 10.1088/1361-6463/aa6c04.
4. Pyatakov A.P., Zvezdin A.K. Magnetoelectric and multiferroic media, Physics-Uspekhi, 2012, vol. 182, issue 6, pp. 557-581. DOI: 10.3367/UFNe.0182.201206b.0593.
5. Ortega N., Kumar A., Scott J.F., Katiyar R.S. Multifunctional magnetoelectric materials for device applications, Journal of Physics: Condensed Matter, 2015, vol. 27, no. 50, art. no. 504002. 23 p. DOI: 10.1088/0953-8984/27/50/504002.
6. Vopson M. Fundamentals of multiferroic materials and their possible applications, Critical Reviews in Solid State and Materials Sciences, 2015, vol. 40, issue 4, pp. 223-250. DOI:10.1080/10408436.2014.992584.
7. Yang T. N., Hu J.-M., Nan C. W., Chen L. Q. Predicting effective magnetoelectric response in magnetic-ferroelectric composites via phase-field modeling, Applied Physics Letters, 2014, vol. 104, issue 5, pp. 052904-1-052904-5. DOI: 10.1063/1.4863941.
8. Karpenkov D.Y., Bogomolov A.A., Solnyshkin A.V. et al. Multilayered ceramic heterostructures of lead zirconate titanate and nickel-zinc ferrite for magnetoelectric sensor elements, Sensors and Actuators A: Physical, 2017, vol. 266, pp. 242-246. DOI: 10.1016/j.sna.2017.09.011.
9. Grechishkin R.M., Kaplunov I.A., Ilyashenko S.E. et al. Magnetoelectric effect in metglas/piezoelectric macrofiber composites, Ferroelectrics, 2011, vol. 424, issue 1, pp. 78-85. DOI: 10.1080/00150193.2011.623939.
10. Makarova L.A., Alekhina Yu.A., Perov N.S. et al. Elastically coupled ferromagnetic and ferroelectric microparticles: new multiferroic materials based on polymer, NbFeB and PZT particles., Journal of Magnetism and Magnetic Materials, 2017, vol. 470, pp. 89-92. DOI: 10.1016/j.jmmm.2017.11.121.
11. Okazaki K. Ceramic engineering for dielectrics. Tokyo: Gakken-sha, Publishing Co., Ltd., 1969, 532 p. (In Japanese) [Okadzaki K. Tekhnologiya keramicheskikh diehlektrikov [Ceramic dielectric technology], transl. by M.M. Bogachikhina, L.R. Zajontsa. Moscow, Ehnergiya Publ., 1976, 336 p. (In Russian)].
12. Malyshkina O.V., Shishkov G.S., Ivanova A.I., Malyshkin Y.A., Alexina Y.A. Multiferroic ceramics based on barium titanate and barium ferrite., Ferroelectrics, 2020, vol. 569, issue 1, pp. 215-221. DOI: 10.1080/00150193.2020.1822679.
13. Srinivasan G., Devreugd C.P., Flattery C.S., Laletsin V.M., Paddubnaya N. Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites, Ferroelectrics, 2004, vol. 85, issue 13, pp. 2550-2552. DOI: 10.1063/1.1795365.
14. Malyshkina O.V., Shishkov Gr.S., Ivanova A.I. Optimizatsiya tekhnologii polucheniya kompozita na osnove ferrita bariya i titanata bariya [Optimization of technology for producing a composite based on barium ferrite and barium titanate], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, vol. 13, pp. 740-749. DOI: 10.26456/pcascnn/2021.13.740. (In Russian).
15. Jonscher, A.K. Dielectric relaxation in solids. London: Chelsea Dielectrics Press, 1983. – 396 p.
16. Golovnin V.А., Kaplunov I.А., Ped'ko B.B., Malyshkina O.V., Movchikova А.А. Fizicheskie osnovy, metody issledovaniya i prakticheskoe primenenie p'ezomaterialov [Physical foundations, research methods and practical application of piezomaterials]. – Moscow, TEKHNOSFERА Publ., 2013. – 272 p.