The effect of tellurium vapor on the structure formation and dielectric properties of a multicomponent system based on sodium-potassium niobate
O.V. Malyshkina, A.I. Ivanova, D.V. Mamaev
Tver State University
DOI: 10.26456/pcascnn/2022.14.183
Original article
Abstract: The paper presents the results of studying the effect of paratellurite vapor during sintering on the dielectric properties of a multicomponent system based on sodium–potassium niobate ceramics (mKNN) with the general formula (Na0,5K0,49Li0,05Sr0,05)(Nb0,9Ta0,05Ti0,05)O3. The inclusion of paratellurite in mKNN ceramics changes the shape and increases the grain size by an order of magnitude. Thus, if grains containing only mKNN material have a cubic shape, then the presence of tellurium leads to the formation of grains in the form of sufficiently long tubes (when the length is several times greater than the diameter) with a porous internal structure. The addition of TeO2 to the mKNN composition leads to the disappearance of the maximum observed for mKNN on the temperature dependence of the permittivity in the region of 220-250°C, which corresponds to a nonferroelectric structural phase transition in KNN ceramics, and to smoothing the resonant- antiresonant peak in the range of 5-15 MHz, which appears in the KNN system with the introduction of modifiers.
Keywords: piezoelectric ceramics of potassium sodium niobate, lead-free materials, grain structure, complex permittivity dispersion
- Olga V. Malyshkina – Dr. Sc., Full Professor, Professor of the Department of Computer Security and Mathematical Control Methods, Tver State University
- Alexandra I. Ivanova – Ph. D., Docent of the Applied Physic Department, Tver State University
- Danila V. Mamaev – 3rd year postgraduate student, Tver State University
Reference:
Malyshkina, O.V. The effect of tellurium vapor on the structure formation and dielectric properties of a multicomponent system based on sodium-potassium niobate / O.V. Malyshkina, A.I. Ivanova, D.V. Mamaev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 183-193. DOI: 10.26456/pcascnn/2022.14.183. (In Russian).
Full article (in Russian): download PDF file
References:
1. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic, Official Journal of the European Union L 37, 2003, vol. 46, pp. 19-23.
2. Reznichenko L.A., Verbenko I.A., Andryushin K.P. Bessvintsovye segnetop'ezoehlektricheskie polikristallicheskie materialy na osnove niobatov shchelochnykh metallov: istoriya, tekhnologiya, perspektivy [Lead-free ferropiezoelectric polycrystalline materials based on alkali metal niobates: history, technology, prospects], Fazovye perekhody, uporyadochennye sostoyaniya i novye materialy [Phase transitions, ordered states and new materials], 2013, no. 11, pp. 30-46. (In Russian).
3. Zhang Sh., Xia R., Shrout Th.R. Lead-free piezoelectric ceramics vs. PZT?, Journal of Electroceramics, 2007, vol. 19, issue 4, pp. 251-257. DOI 10.1007/s10832-007-9056-z.
4. Saito Y., Takao H., Tani T. et al. Lead-free piezoceramics, Nature, 2004, vol. 432, issue 7013, pp. 84-87. 10.1038/nature03028.
5. Malič B., Koruza J., Hreščak J. et al. Sintering of lead-free piezoelectric sodium potassium niobate ceramics, Materials, 2015, vol. 8, issue 12, pp. 8117-8146. DOI: 10.3390/ma8125449.
6. Yang Z., Du H., Jin L. et al. A new family of sodium niobate-based dielectrics for electrical energy storage applications, Journal of the European Ceramic Society, 2019, vol. 39, issue 9, pp. 2899-2907. DOI: 10.1016/j.jeurceramsoc.2019.03.030.
7. Su H.H., Hong C.S., Tsai C.C., Chu S.Y. Electric properties of SrTiO3 modified (Na0.48K0.48Li0.04)Nb0.89Ta0.05Sb0.06O3 lead-free ceramics, Journal of Solid State Science and Technology, 2016, vol. 5, no. 10, pp. N67-N71. DOI: 10.1149/2.0111610jss.
8 Miroshnikov P.V., Dobrynin D.A., Nersesov S.S., Segalla A.G., Solov'ev M.A., Khod'ko O.N. P’ezoelektricheskij material [Piezoelectric material]. Patent RF, no 2514353, 2014 (In Russian).
9. Jonscher A.K. Universal relaxation law. London, Chelsea Dielectrics Press, 1996, xvi, 415 p.
10. Felix A.A., Orlandi M.O., Varela J.A. Schottky-type grain boundaries in CCTO ceramics, Solid State Communications, 2011, vol. 151, issue 19, pp. 1377-1381. DOI: 10.1016/j.ssc.2011.06.012.
11. Kwok H.L. Understanding negative capacitance effect using an equivalent resistor-capacitor circuit, Physica Status Solidi C, 2008, vol. 5, issue 2, pp. 638-640. DOI: 10.1002/pssc.200776806.
12. Poplavko Yu.M. Fizika dielektrikov [Physics of dielectrics]. Kyiv: Vishcha shkola Publ., 1980, 400 p. (In Russian).