Fractal analysis of magneto-optical images of a magnet surface after exposure to a pulsed field
A.D. Zigert, E.M. Semenova, N.B. Kuz`min, N.Yu. Sdobnyakov
Tver State University
DOI: 10.26456/pcascnn/2022.14.101
Short communication
Abstract: The results of fractal analysis of images of the surface of a permanent magnet KS37 obtained by the method of the polar Kerr effect using an indicator bismuth-containing ferrite-garnet film after magnetization reversal by a pulsed field of 0,1 – 1,5 T are presented. The obtained dependences of the remanent magnetization on the magnitude of the external pulsed field are compared with the fractal dimension of the magneto-optical images of the magnet surface after exposure to the pulsed field. It is hypothesized that the field dependences of the fractal dimension of the profile of magneto-optical images of the magnet surface coincide in shape with the graphs of the first derivative dMr(H)/dH of the magnetization with respect to the field, i.e. there is a relationship between the nature of the magnetization change in a pulsed field and the type of the magneto-optical image analyzed by using the fractal geometry methods.
Keywords: permanent magnet, effect, ferrite-garnet films, domain structure, fractal dimension, derivative of magnetization with respect to magnetic field
- Alexandr D. Zigert – Senior Lecturer, Applied Physics Department, Tver State University
- Elena M. Semenova – Ph. D., Docent, Condensed Matter Physics Department, Tver State University
- Nickolay B. Kuz`min – 4st year student, Applied Physics Department, Tver State University
- Nickolay Yu. Sdobnyakov – Ph. D., Docent, General Physics Department, Tver State University
Reference:
Zigert, A.D. Fractal analysis of magneto-optical images of a magnet surface after exposure to a pulsed field / A.D. Zigert, E.M. Semenova, N.B. Kuz`min, N.Yu. Sdobnyakov // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 101-107. DOI: 10.26456/pcascnn/2022.14.101. (In Russian).
Full article (in Russian): download PDF file
References:
1. Harp G.R., Parkin S.S.P. Epitaxial growth of metals by sputter deposition, Thin Solid Films, 1996, vol. 288, issue 1-2, pp. 315-324. DOI: 10.1016/S0040-6090(96)08808-6.
2. Zvezdin А.К., Kotov V.A. Modern magnetooptics and magnetooptical materials. New York, Taylor & Francis Croup, 1997, 404 p.
3. Scheunert G., Heinonen O., Hardeman R. et al. A review of high magnetic moment thin films for microscale and nanotechnology applications, Applied Physics Reviews, 2016, vol. 3, issue 1, pp. 011301-1-011301-44. DOI: 10.1063/1.4941311.
4. Herzer G. Magnetization process in nanocrystalline ferromagnets, Materials Science and Engineering: A, 1991, vol. 133, pp. 1-5. DOI: 10.1016/0921-5093(91)90003-6.
5. Iskhakov R.S., Komogortsev S.V. Magnetic microstructure of amorphous, nanocrystalline, and nanophase ferromagnets, The Physics of Metals and Metallography, 2011, vol. 112, issue 7, pp. 666-681. DOI: 10.1134/S0031918X11070064.
6. Kim D.-H., Cho Y.-C., Choe S.-B., Shin S.-C. Correlation between fractal dimension and reversal behavior of magnetic domain in / Co Pd nanomultilayers, Applied Physics Letters, 2003, vol. 82, no. 21, pp. 3698-3700. DOI: 10.1063/1.1578185.
7. Komogortsev S.V., Iskhakov R.S., Fel’k V.A. Fractal dimension effect on the magnetization curves of exchange-coupled clusters of magnetic nanoparticles, Journal of Experimental and Theoretical Physics, 2019, vol. 128, issue 5, pp. 754-760. DOI: 10.1134/S1063776119040095.
8. Polyakova O.P., Akimova M.L., Polyakova P.A. Remagnetization of a fractal magnetic structure, Bulletin of the Russian
Academy of Sciences: Physics, 2020, vol. 84, issue 2, pp. 166-168. DOI: 10.3103/S106287382002029X.
9. Han B.-S., Li D., Zheng D.-J., Zhou Y. Fractal study of magnetic domain patterns, Physical Review B, 2002, vol. 66, issue 1, pp. 014433-1-014433-5. DOI: 10.1103/PhysRevB.66.014433.
10. Dovbnya L.A., Naumov D.E., Khramov B.V. Fractal model of magnetization reversal in a strained garnet ferrite film, Journal of Experimental and Theoretical Physics Letters, 2001, vol. 73, issue 7, pp. 366-369. DOI: 10.1134/1.1378121.
11. Bathany C., Romancer M.L., Armstrong J.N., Chopra H.D. Morphogenesis of maze-like magnetic domains, Physical Review B, 2010, vol. 82, issue 18, pp. 184411-1-184411-14. DOI: 10.1103/PhysRevB.82.184411. DOI: 10.1103/PhysRevB.82.184411.
12. Ivanova A.I., Semenova E.M., Dunaeva G.G., Ovcharenko S.V., Tretyakov S.A., Zigert A.D. Vliyanie defektov na magnitnye kharakteristiki ferrit-granatovykh plenok [Influence of defects on magnetic characteristics of ferrite-garnet films], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 103-112. DOI: 10.26456/pcascnn/2020.12.103. (In Russian).
13. Zigert A.D., Dunaeva G.G., Semenova E.M. et al. Fractal dimension behaviour of maze domain pattern in ferrite-garnet films during magnetisation reversal, Journal of Superconductivity and Novel Magnetism, 2022, vol. 35, issue 8, pp. 2187-2193. DOI: 10.1007/s10948-022-06301-w.
14. Zigert A.D., Dunaeva G.G., Sdobnyakov N.Yu. Fraktal'nyj analiz labirintnoj domennoj struktury ferrit-granatovykh plenok v protsesse peremagnichivaniya [Fractal analysis of the maze-like domain structure of ferrite-garnet films in the process of magnetization], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 11, pp. 134-145. DOI: 10.26456/pcascnn/2021.13.134. (In Russian).
15. Zigert A.D., Ivanova A.I., Kuz’min N.B., Semenova E.M., Sdobnyakov N.Yu. Fraktal'nyj analiz domennoj struktury Bi:FG plenki do i posle termicheskogo vozdejstviya [Fractal analysis of the domain structure of the Bi:FG film before and after thermal exposure], Collection of abstracts of the 3rd International Scientific Seminar «Caloric days in Korolev: functional materials and their applications», Korolev, August 16-20, 2022. Chelyabinsk: Chelyabinsk State University Publ., 2022, p. 122. (In Russian).
16. Zigert A.D., Dunaeva G.G., Kuz’min N.B. et al. Fraktal'nyj analiz magnitoopticheskoj vizualizatsii protsessa peremagnichivaniya postoyannogo magnita v impul'snom pole [Fractal analysis of magneto-optical visualization of the process of magnetization reversal of a permanent magnet in a pulsed field], Abstracts of XXIX Russian Conference on Electron Microscopy «Modern methods of electron, probe microscopy and complementary methods for the study of nanostructures and nanomaterials», Moscow, August 29-31, 2022. Moscow Federal Research Center «Crystallography and Photonics» of RAS, 2022, p. 163-165. (In Russian).
17. Semenova E.M., Lyakhova M.B., Kuznetsova Yu.V. et al. A comparative analysis of magnetic properties and microstructure of high coercivity Sm(CoCuFe)5 quasi-binary alloys in the framework of fractal geometry, Journal of Physics: Conference Series, 2020, vol. 1658, art. no. 012050, 6 p. DOI: 10.1088/1742-6596/1658/1/012050.
18. Semenova E.M., Ivanov D.V., Lyakhova M.B. et al. Fractal geometry of the nano- and magnetic domain structures of Sm – Co – Cu – Fe ferromagnetic alloy in a high coercive state, Bulletin of the Russian Academy of Sciences: Physics, 2021, vol. 85, issue 9, pp. 955-958. DOI: 10.3103/S1062873821090252.
19. Semenova E.M., Lyakhova M.B., Ivanov D.V. et al. Effects of low-temperature treatment on magnetic properties of Sm(Co,Cu,Fe)5 compounds, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 149-161. DOI: 10.26456/pcascnn/2020.12.149. (In Russian).