Electrical response of lithium niobate and lithium tantalate thin films to modulated thermal radiation
S.I. Gudkov1, A.V. Solnyshkin1, R.N. Zhukov2, D.A. Kiselev2
1 Tver State University
2 National University of Science and Technology «MISiS»
DOI: 10.26456/pcascnn/2022.14.082
Original article
Abstract: In this work, we studied the pyroelectric activity of thin polycrystalline lithium niobate films fabricated by radio frequency magnetron sputtering and laser ablation, and thin polycrystalline lithium tantalate films fabricated by radio frequency magnetron sputtering. Using the dynamic method of studying the pyroelectric effect, it was found that all samples have self-polarization that occurs during the post-growth thermal annealing of the structure. An estimate of the pyroelectric coefficient showed that the values of the pyroelectric coefficient of lithium niobate and lithium tantalate thin films are several times lower than the values of the pyroelectric coefficient for bulk crystals of the corresponding materials. This may be due to the fact that the polarization vector of some grains lies in the film plane, as well as to the traps existing in the film volume and at the film/substrate interface, on which charge carriers recombine and do not participate in the generation of the pyroelectric current.
Keywords: lithium niobate, lithium tantalate, thin film, dynamic method, self-polarization, pyroelectric effect, pyroelectric coefficient, LiNbO3, LiTaO3, ferroelectric, laser ablation method, radio frequency magnetron sputtering
- Sergey I. Gudkov – 4th year postgraduate student, Assistant, Condensed Matter Physics Department, Tver State University
- Alexander V. Solnyshkin – Dr. Sc., Professor, Condensed Matter Physics Department, Tver State University
- Roman N. Zhukov – Researcher, Laboratory of Physics of Oxide Ferroelectrics, National University of Science and Technology «MISiS»
- Dmitry A. Kiselev, National University of Science and Technology «MISiS»
Reference:
Gudkov, S.I. Electrical response of lithium niobate and lithium tantalate thin films to modulated thermal radiation / S.I. Gudkov, A.V. Solnyshkin, R.N. Zhukov, D.A. Kiselev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 82-91. DOI: 10.26456/pcascnn/2022.14.082. (In Russian).
Full article (in Russian): download PDF file
References:
1. Qi Yi., Li Ya. Integrated lithium niobate photonicsi, Nanophotonics, 2020, vol. 9, issue 6, pp. 1287-1320. DOI: 10.1515/nanoph-2020-0013.
2. Irzaman, Siskandar R., Nabilah N. et al. Application of lithium tantalate (LiTaO3) films as light sensor to monitor the light status in the Arduino Uno based energy-saving automatic light prototype and passive infrared sensor, Ferroelectrics, 2018, vol. 524, issue 1, pp. 44-55. DOI: 10.1080/00150193.2018.1432842.
3. Kämpfe T., Wang B., Haußmann A. et al. Tunable Non-Volatile Memory by Conductive Ferroelectric Domain Walls in Lithium Niobate Thin Films, Crystals, 2020, vol. 10, issue 9, art. no. 804, 11 p. DOI: 10.3390/cryst10090804.
4. García-Cabañes A., Blázquez-Castro A., Arizmendi L. et al. Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate, Crystals, 2018, vol. 8, issue 2, art. no. 65, 15 p. DOI: 10.3390/cryst8020065.
5. Geuther J.A., Danon Ya. High-energy x-ray production with pyroelectric crystals, Journal of Applied Physics, 2005, vol. 97, issue 10, art. no. 104916, 5 p. DOI: 10.1063/1.1915536.
6. Geuther J.A., Danon Ya. Electron and positive ion acceleration with pyroelectric crystals, Journal of Applied Physics, 2005, vol. 97, issue 7, art. no. 074109, 5 p. DOI: 10.1063/1.1884252.
7. Yan W., Zhao Ch., Luo W. et al. Optically guided pyroelectric manipulation of water droplet on a superhydrophobic surface, ACS Applied Materials & Interfaces, 2021, vol. 13, issue 19, pp. 23181-23190. DOI: 10.1021/acsami.1c03407.
8. Jayadevan K.P., Tseng T.Y. Review сomposite and multilayer ferroelectric thin films: processing, properties and applications, Journal of Materials Science: Materials in Electronics, 2002, vol. 13, issue 8, pp. 439-459. DOI: 10.1023/A:1016129318548.
9. Hassanien A.S., Akl A.A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films, Superlattices and Microstructures, 2016, vol. 89, pp. 153-169. DOI: 10.1016/j.spmi.2015.10.044.
10. Lima E.C., Araújo E.B., Bdikin I.K. et al. The self-polarization effect in Pb(Zr0.50Ti0.50)O3 thin films with no preferential orientation, Materials Research Bulletin, 2012, vol. 47, issue 11, pp. 3548-3551. DOI: 10.1016/j.materresbull.2012.06.058.
11. Afanasjev V.P., Petrov A.A., Pronin I.P. et al. Polarization and self-polarization in thin PbZr1-xTixO3 (PZT) films, Journal of Physics: Condensed Matter, 2001, vol. 13, no. 39, pp. 8755-8763. DOI: 10.1088/0953-8984/13/39/304.
12. Malyshkina O.V., Movchikova A.A., Grechishkin R.M. et al. Use of the thermal square wave method to analyze polarization state in ferroelectric materials, Ferroelectrics, 2010, vol. 400, issue 1, pp. 63-75. DOI: 10.1080/00150193.2010.505470.
13. Baklanova K.D., Solnyshkin A.V., Kislova I.L. et al. Pyroelectric properties and local piezoelectric response of lithium niobate thin Films, Physica Status Solidi A, 2018, vol. 215, issue 5, art. no. 1700690, 6 p. DOI: 10.1002/pssa.201700690.
14. Baklanova K.D., Gudkov S.I., Kamenshchikov M.V. et al. Elektrofizicheskie kharakteristiki tonkoplenochnykh struktur na osnove niobata litiya [Electrophysical characteristics of thin-film structures based on lithium niobate], Fundamental'nye problemy radioehlektronnogo priborostroeniya [Fundamental problems of radio-electronic instrumentation], 2016, vol. 16, issue 4, pp. 87-90. (In Russian).
15. Malyshkina O.V., Lisitsin V.S., Dec J. et al. Pyroelectric and dielectric properties of calcium barium niobate single crystals,
Physics of the Solid State, 2014, vol. 56, issue 9, pp. 1824-1827. DOI: 10.1134/S1063783414090194.
16. Glass A.M. Dielectric, thermal, and pyroelectric properties of ferroelectric LiTaO3, Physical Review, 1968, vol. 172, issue 2, pp. 564-571. DOI: 10.1103/PhysRev.172.564.
17. Smith R.T., Welsh F.S. Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate, Journal of Applied Physics, 1971, vol. 42, issue 6, pp. 2219-2230. DOI: 10.1063/1.1660528.
18. Webb R. Absolute absorptance measurements on copper-based allows at infrared wavelengths, International Journal of Thermophysics, 1989, vol. 10, issue 2, pp. 513-525. DOI: 10.1007/BF01133547.
19. Smith D.R., Fickett F.R. Low-temperature properties of silver, Journal of Research of the National Institute of Standards and Technology, 1995, vol. 100, issue 2, pp. 119-171. DOI: 10.6028/jres.100.012.
20. Parravicini J., Safioui J., Degiorgio V. et al. All-optical technique to measure the pyroelectric coefficient in electro-optic crystals, Journal of Applied Physics, 2011, vol. 109, issue 3, art. no. 033106, 5 p. DOI: 10.1063/1.3544069.
21. Levy M., Osgood Jr. R.M., Liu R. et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing, Applied Physics Letters, 1998, vol. 73, issue 16, pp. 2293-2295. DOI: 10.1063/1.121801.
22. Norkus V. Pyroelectric infrared detectors based on lithium tantalate: state of art and prospects, Proceedings SPIE, Detectors and Associated Signal Processing, 2004, vol. 5251, pp. 121-128. DOI: 10.1117/12.513884.
23. Combette Ph., Nougaret L., Giani A. et al. RF magnetron-sputtering deposition of pyroelectric lithium tantalate thin films on ruthenium dioxide, Journal of Crystal Growth, 2007, vol. 304, issue 1, pp. 90-96. DOI: 10.1016/j.jcrysgro.2007.02.006.