Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Crystallization of nanocrystalline hydroxylapatite in the presence of albumin

O.A. Golovanova

Omsk State University named after F.M. Dostoevsky

DOI: 10.26456/pcascnn/2022.14.071

Original article

Abstract: Due to the development of modern biotechnologies and nanomaterials, in the near future it is expected to achieve a new, higher quality level in the design and improvement of the characteristics of intraosseous implants used in orthopedics. Calcium phosphate was synthesized from a model solution of synovia in the presence of albumin. Synthetic solid phases were studied using X-ray phase analysis, IR-Fourier spectroscopy, scanning electron microscopy, and energy dispersive analysis. The supernatant was examined for the presence of ions and to calculate the ratio. It was found that albumin does not affect the phase composition of the samples: the sediments are single-phase and consist of B-type hydroxylapatite carbonate. The study of the structure and morphology of the solid phase showed that the presence of proteins leads to formation of composites with a lower specific surface area compared to hydroxylapatite carbonate. The largest crystallite size is observed for the hydroxylapatite carbonate /albumin sample with the albumin concentration of 12 g/l. With the help of the thermal analysis of the fixation of thermal effects five stages of the thermal transformation were identified in the temperature range of 25-1000 °C; for all samples, the main stages are II–III, associated with the thermal destruction of organic additives. The study of the bioactivity of the samples showed that in the case of active resorption, the most soluble were the samples synthesized in the presence of albumin (>7 g/l), and in the case of passive resorption, the hydroxylapatite carbonate/albumin samples (5 and 7 g/l).

Keywords: crystallization, hydroxylapatite, albumin, adsorption, bioresorbability

  • Olga A. Golovanova – Dr. Sc., Professor, Head of the Department of Inorganic Chemistry, Omsk State University named after F.M. Dostoevsky


Golovanova, O.A. Crystallization of nanocrystalline hydroxylapatite in the presence of albumin / O.A. Golovanova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 71-81. DOI: 10.26456/pcascnn/2022.14.071. (In Russian).

Full article (in Russian): download PDF file


1. James S.L., Abate D., Abate K.H. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study, The Lancet, 2018, vol. 392, issue 10159, pp. 1789-1858. DOI: 10.1016/s0140-6736(18)32279-7.
2. Tavafoghi Jahromi M., Yao G., Cerruti. M. The importance of amino acid interactions in the crystallization of hydroxyapatite, Journal of The Royal Society Interface, 2013, vol. 10, issue 80, pp. 1-14. DOI: 10.1098/rsif.2012.0906.
3. Ahn S.-J., Shin Y.M., Kim S.E. et al. Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering, Biotechnology and Bioprocess Engineering, 2015, vol. 20, issue 5, pp. 948-955. DOI: 10.1007/s12257-015-0176-z.
4. Pigossi S.C., de Oliveira J.P.L., Finoti L.S. et al. Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model, Journal of Biomedical Materials Research Part A, 2015, vol. 103, issue 10, pp. 3397-3406. DOI: 10.1002/jbm.a.35472.
5. Lesnyak O.M., Baranova I.A., Belova K.Yu. et al. Osteoporoz v Rossijskoj Federatsii: epidemiologiya, mediko-sotsial'nye i ekonomicheskie aspekty problemy (obzor literatury) [Osteoporosis in Russian Federation: epidemiology, socio-medical and economical aspects (review)], Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia], 2018, vol. 24, no. 1, pp. 155-168. (In Russian). DOI: 10.21823/2311-2905-2018-24-1-155-168.
6. Guo X., Long Y., Li W., Dai H. Osteogenic effects of magnesium substitution in nano-structured β -tricalcium phosphate produced by microwave synthesis, Journal of Materials Science, 2019, vol. 54, issue 16, pp. 11197-11212. DOI: 10.1007/s10853-019-03674-7.
7. Pikis S., Goldstein J., Spektor S. Potential neurotoxic effects of polymethylmethacrylate during cranioplasty, Journal of Clinical Neuroscience, 2015, vol. 22, issue 1, pp. 139-143. DOI: 10.1016/j.jocn.2014.06.006.
8. Kalinkevich O.V., Danilchenko S.N., Kalinkevich A.N. Formation of nanocrystalline hydroxyapatite in presence of some aminoacids, Journal of Nano- and Electronic Physics, 2014, vol. 6, no. 4, art. no. 04014, 5 p.
9. Zhang J., Wu H., He F. et al. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions, Journal Materials Science and Engineering: C, 2019, vol. 99, pp. 1199-1212. DOI: 10.1016/j.msec.2019.02.042.
10. Roy M., Bose S. Osteoclastogenesis and osteoclastic resorption of tricalcium phosphate: Effect of strontium and magnesium doping, Journal of Biomedical Materials Research Part A, 2012, vol. 100A, issue 9, pp. 2450-2461. DOI: 10.1002/jbm.a.34181.
11. Ressler A., Cvetnić M., Antunović M. et al. Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone, Journal of Biomedical Materials Research – Part B Applied Biomaterials, 2020, vol. 108, issue 4, pp. 1697-1709. DOI: 10.1002/jbm.b.34515.
12. Wang J., Liu C. Biomimetic collagen/hydroxyapatite composite scaffolds: fabrication and characterizations, Journal of Bionic Engineering, 2014, vol. 11, issue 4, pp. 600-609. DOI: 10.1016/S1672-6529(14)60071-8.
13. Smolko E., Romero G. Studies on crosslinked hydroxyapatite-polyethylene composite as a bone-analogue material, Radiation Physics and Chemistry, 2007, vol. 76, issue 8-9, pp. 1414-1418. DOI: 10.1016/j.radphyschem.2007.02.043.
14. Golovan A.P., Rugal A.A., Gun'ko V.M. et al. Modelirovanie kostnoj tkani nanokompozitnymi sistemami na osnove gidroksiapatita – al'bumina – zhelatina i ih svojstva [Modeling of bone tissue by nanocomposite systems on the basis of hydroxyapatite – albumin – gelatin and their properties], Poverhnost' [Surface], 2010, no. 2(17), pp. 244-265. (In Russian).
15. Thuan L.V., Troubitsin M.A., Gabruk N.G. et al. Issledovanie osobennostej sorbcii al'bumina na sinteticheskih nanorazmernyh kremnijzameshchennyh gidroksiapatitah [Investigation of adsorption of albumin on synthesized nano-sized silicon-substituted hydroxyapatite], Sorbtsionnye i Khromatograficheskie Protsessy [Sorption and Chromatographic Processes],
2015, vol.15, no. 1, рр. 100-109. DOI: 10.17308/sorpchrom.2015.15/26. (In Russian).
16. Severin A.V., Badun G.A., Chernysheva M.G. Studying the nature of interaction between nanohydroxyapatite and albumins by radionuclide-microscopy diagnostics, Moscow University Chemistry Bulletin, 2011, vol. 66, issue 6, pp. 371-376. DOI: 10.3103/S0027131411060083.
17. Zhou Y., Zhao Y., Wang L. et al. Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel, Radiation Physics and Chemistry, 2012, vol. 81, issue 5, рр. 553-560. DOI: 10.1016/j.radphyschem.2012.01.014.
18. Izmailov R.R., Golovanova O.A., Gerk S.A. Sposob polucheniya karbonatgidroksilapatita iz model'nogo rastvora sinovial'noj zhidkosti cheloveka [Method for obtaining carbonate hydroxylapatite from a model solution of human synovial fluid]. Patent RF, no. 2526191, 2014. (In Russian).
19. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url: (accessed 15.06.2022).
20. Massovaya kontsentratsiya kal'tsiya v vodakh. Metodika vypolneniya izmerenij titrimetricheskim metodom s trilonom B: RD 52.24.403-2007 [Mass concentration of calcium in waters. Technique for performing titrimetric measurements with trilon B: Guidance Documents 52.24.403-2007]. Rostov na Donu: Rosgidromet Publ., 2007. 26 p. (In Russian).
21. Voda pit'evaya. Metod opredeleniya soderzhaniya polifosfatov: GOST 18309-72 [Drinking water. Method for determination of polyphosphate content: State Standard 18309-72]. Moscow, Gosstandart SSSR Publ., 1972. 5 p. (in Russian).
22. Kretovich V.L. Metody sovremennoj biohimii [Methods of modern biochemistry], eb. by V.L. Kretovich, K.F. Shal'c. Moscow, Nauka Publ., 1975, 176 p. (In Russian).
23. IBM SPSS Statistics. Available at: www.url: (accessed 15.06.2022).

⇐ Prevoius journal article | Content |