Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Study of calcium oxalate nanocrystalline structures and kinetics of calcium oxalate deposition

O.A. Golovanova

Omsk State University named after F.M. Dostoevsky

DOI: 10.26456/pcascnn/2022.14.061

Original article

Abstract: Calcium oxalates, represented by wavellite CaC2O4·H2O and weddellite CaC2O4·2H2O (the most stable forms), are the main components of stones in the genitourinary system, and are also part of dental, gallstones, and other mineral deposits. It is known that modern approaches to the study and modeling of crystallization processes make it possible to analyze the influence of a number of factors (exogenous and endogenous) arising at various levels of organization: from atoms and molecules to macroscopic processes occurring in industrial devices. The process of crystallization, taking into account the variety of acting factors and forms of crystal structures, consists of two main stages: formation of a solid phase nucleus and its growth (formation of a solute crystal). In this work, using modern approaches, the physicochemical and kinetic patterns of crystallization of calcium oxalates under conditions close to physiological are determined. The effect of physiological solution components (organic and inorganic) was studied, the staged mechanism of the solid phase formation was established, and the kinetic parameters of the growth stage were calculated (lgk = 33.1). The inhibitory effect of inorganic additives (Mg2+, Cl), amino acids (glycine, glutamine, aspartic) and the accelerating effect of hydroxyapatite crystals, seed in the form of calcium oxalate and urea crystals on the crystallization process were revealed.

Keywords:

  • Olga A. Golovanova – Dr. Sc., Professor, Head of the Department of Inorganic Chemistry, Omsk State University named after F.M. Dostoevsky

Reference:

Golovanova, O.A. Study of calcium oxalate nanocrystalline structures and kinetics of calcium oxalate deposition / O.A. Golovanova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 61-70. DOI: 10.26456/pcascnn/2022.14.061. (In Russian).

Full article (in Russian): download PDF file

References:

1. Golovanova O.A., Gerk S.A., Kuriganova A.N., Izmajlov R.R. Korrelyatsionnye zavisimosti mezhdu fazovym, elementnym i aminokislotnym sostavom fiziogennykh, patogennykh OMA i ikh sinteticheskikh analogov [Correlations between the phase, elemental and amino acid composition of physiogenic, pathogenic OMA and their synthetic analogues], Sistemy. Metody. Tekhnologii [Systems. Methods. Technology], 2012, no. 4 (16), рр. 131-139. (In Russian).
2. Voshchula V.I. Mochekamennaya bolezn': etiotropnoe i patogeneticheskoe lechenie, profilaktika [Urolithiasis: etiotropic and pathogenetic treatment, prevention], Retsept [Recipe], 2007, no. 6(56), pp. 149-159. (In Russian).
3. Gualtieri A.F. Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers, Toxicology and Applied Pharmacology, 2018, vol. 361, рр. 89-98. DOI: 10.1016/j.taap.2018.05.012.
4. Conti C., Brambilla L., Colombo C. et al. Stability and transformation mechanism of weddellite nanocrystals studied by X-ray diffraction and infrared spectroscopy, Physical Chemistry Chemical Physics, 2010, vol.12, issue 43, рр. 14560-14566. DOI: 10.1039/C0CP00624F.
5. Bazin D., Leroy C., Tielens F. et al. Hyperoxaluria is related to whewellite and hypercalciuria toweddellite: What happens when crystalline conversionoccurs? Comptes Rendus Chimie, 2016, vol. 19, issue 11-12, рр. 1492-1503. DOI: 10.1016/j.crci.2015.12.011.
6. Vaitheeswari S., Sriram R., Brindha P., Kurian G.A. Studying inhibition of calcium oxalate stone formation: an in vitro approach for screening hydrogen sulfide and its metabolites, International Brazilian Journal of Urology, 2015, vol. 41, no 3, рр. 503-510. DOI: 10.1590/S1677-5538.IBJU.2014.0193.
7. Abdel-Aal E.A., Yassin A.M.K., El-Shahat M.F. Inhibition of nucleation and crystallisation of kidney stone (calcium oxalate monohydrate) using Ammi Visnaga (khella) plant extract, International Journal of Nano and Biomaterials, 2016, vol. 6, no. 2, рр. 110-126. DOI: 10.1504/IJNBM.2016.10000549.
8. Okumura N., Tsujihata M., Momohara C. et al. Diversity in protein profiles of individual calcium oxalate kidney stones, PLOS One, 2013, vol.8, issue 7, art. no. e68624, 9 p. DOI: 10.1371/journal.pone.0068624.
9. Finkielstein V.A., Goldfarb D.S. Strategies for preventing calcium oxalate stones, Canadian Medical Association Journal., 2006, vol.174, issue 10, рр. 1407-1409. DOI: 10.1503/cmaj.051517.
10. Linnikov O.D. Mechanism of precipitate formation during spontaneous crystallization of salts from supersaturated aqueous solutions, Russian Chemical Reviews, 2014, vol. 83, issue 4, рр. 343-364. DOI: 10.1070/RC2014v083n04ABEH004399.
11. Askhabov A.M. Novye idei v teorii obrazovaniya kristallicheskikh zarodyshej (obzor) [New ideas in the theory of formation of crystalline nuclei (review)], Izvestiya Komi nauchnogo tsentra UrO RAN [Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences], 2019, no. 2 (38), рр. 51-60. DOI: 10.19110/1994-5655-2019-2-51-60. (In Russian).
12. Nanev C.N. Evaluation of the critical nucleus size without using interface free energy, Journal of Crystal Growth, 2020, vol. 535, art. no. 125521, 3 p. DOI: 10.1016/j.jcrysgro.2020.125521.
13. Kiselev V.M., Golovanova O.A., Fedoseev V.B. The fractal analysis method for the study of hydroxylapatite crystallization process, Applied Solid State Chemistry, 2018, no. 3, рр. 46-51. DOI: 10.18572/2619-0141-2018-3-4-46-51.
14. Thongboonkerd V., Mungdee S., Chiangjong W. Should urine pH be adjusted prior to gel-based proteome analysis?, Journal of Proteome Research, 2009, vol. 8, issue 6, рр. 3206-3211. DOI: 10.1021/pr900127x.
15. Fleming D.E., van Bronswijk W., Ryall R.L. A comparative study of the adsorption of amino acids on to calcium minerals found in renal calculi, Clinical Science, 2001, vol. 101, issue 2, рр. 159-168. DOI: 10.1042/CS20000312.
16. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). Available at: www.url:https://www.icdd.com/pdf-2 (accessed 15.06.2022).
17. IBM SPSS Statistics. Available at: www.url: https://www.ibm.com/ru-ru/products/spss-statistics (accessed 15.06.2022).
18. Ozao R., Ochiai M. Thermal analysis and self-similarity law in particle size distribution of powder samples. Part 4, Thermochimica Acta, 1993, vol. 220, рр. 191-201. DOI: 10.1016/0040-6031(93)80464-L.
19. Boevé E.R., Cao L.C., De Bruijn W.C. et al. Zeta potential distribution on calcium oxalate crystal and Tamm-Horsfall protein surface analyzed with Doppler electrophoretic light scattering, The Journal of Urology, 1994, vol. 152, issue 2, part 1, рр. 531-536. DOI: 10.1016/S0022-5347(17)32788-X.
20. Dutov V.V. Rastvorenie kamnej pochek: komu? Kogda? Kak? [Dissolving kidney stones: for whom? when? how?], Meditsinskiy sovet [Medical Council], 2016, no. 9, рр. 84-90. DOI: 10.21518/2079-701X-2016-9-84-90. (In Russian).
21. Škrtić D., Füredi-Milhofer H., Marković M. Precipitation of calcium oxalates from high ionic strength solutions: V. The influence of precipitation conditions and some additives on the nucleating phase, Journal of Crystal Growth, 1987, vol.80, issue 1, рр. 113-120. DOI: 10.1016/0022-0248(87)90530-6.
22. Gorichev I.G., Izotov A.D., Gorichev A.I. Analiz kineticheskikh dannykh rastvoreniya oksidov metallov s pozitsij fraktal'noj geometrii [Analysis of the kinetic data of the dissolution of metal oxides from the standpoint of fractal geometry], Zhurnal fizicheskoj khimii [Russian Journal of Physical Chemistry A], 1999, vol.71, no. 10, рр. 1802-1808. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒