Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009


Investigation of the effect of the molar ratio of reagents on the dimensional and structural characteristics of cobalt hexacyanoferrate nanoparticles

A.V. Blinov, I.M. Shevchenko, M.A. Pirogov, A.A. Gvozdenko, A.B. Golik, P.S. Leontev

North Caucasus Federal University

DOI: 10.26456/pcascnn/2022.14.039

Original article

Abstract: In this work the influence of the molar ratio on the dimensional and structural characteristics of cobalt hexacyanoferrate nanoparticles was studied. The synthesis was carried out by chemical method in an aqueous medium using potassium hexacyanoferrate and cobalt nitrate. As a result of the study of samples by the method of dynamic light scattering, the values of the hydrodynamic radius of the samples were obtained. It was found that the minimum size (R = 76 nm) has a sample with a molar ratio K3[Fe(CN)6] : Co(NO3)2= 4 : 1. Scanning electron microscopy revealed that cobalt hexacyanoferrate samples are irregularly shaped aggregates consisting of nanoparticles with a diameter of 50 to 150 nm. As a result of X-ray phase analysis, it was found that the samples have a face-centered cubic crystal structure (Fm 3 m). According to the Debye-Scherrer equation, the average size of crystallites in the samples is from 17 to 20 nm.

Keywords: transition metal hexacyanoferrates, cobalt hexacyanoferrate, cobalt nitrate, scanning electron microscopy, dynamic light scattering, powder diffractometry, hydrodynamic radius

  • Andrey V. Blinov – Ph. D., Assistant professor, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Irina M. Shevchenko – Ph. D., Assistant professor, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Maxim A. Pirogov – 3rd year student, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Alexey A. Gvozdenko – Assistant, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Alexey B. Golik – Assistant, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University
  • Pavel S. Leontev – 2nd year student, Department of Physics and Technology of Nanostructures and Materials, Faculty of Physics and Technology, North Caucasus Federal University

Reference:

Blinov, A.V. Investigation of the effect of the molar ratio of reagents on the dimensional and structural characteristics of cobalt hexacyanoferrate nanoparticles / A.V. Blinov, I.M. Shevchenko, M.A. Pirogov, A.A. Gvozdenko, A.B. Golik, P.S. Leontev // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. — 2022. — I. 14. — P. 39-49. DOI: 10.26456/pcascnn/2022.14.039. (In Russian).

Full article (in Russian): download PDF file

References:

1. Semenishchev V.S., Pyankov A.A., Remez V.P. et al. Izuchenie fiziko-khimicheskikh i sorbtsionnykh svojstv geksatsianoferratov nikelya i zheleza po otnosheniyu k tseziyu [The study of physicochemical and sorption characteristics of nickel and iron hexacyanoferrates with respect to cesium], Sorbtsionnye i khromatograficheskie protsessy [Sorption and chromatographic processes], 2020, vol. 20, issue 1, pp. 54-63. DOI: 10.17308/sorpchrom.2020.20/2380. (In Russian)
2. Nur T., Naidu G., Loganathan P. et al. Rubidium recovery using potassium cobalt hexacyanoferrate sorbent, Desalination
and Water Treatment, 2016, vol. 57, issue 55, pp. 26577-26585. DOI: 10.1080/19443994.2016.1185383.
3. Kołodyńska D., Hubicki Z., Kubica B. Hexacyanoferrate composite sorbent in removal of anionic species from waters and waste waters, Separation Science and Technology, 2012, vol. 47, issue 9, pp. 1361-1368. DOI: 10.1080/01496395.2012.672525.
4. Vrtoch Ľ., Pipíška M., Horník M. et al. Sorption of cesium from water solutions on potassium nickel hexacyanoferrate-modified Agaricus bisporus mushroom biomass, Journal of Radioanalytical and Nuclear Chemistry, 2011, vol. 287, issue 3, pp. 853-862. DOI: 10.1007/s10967-010-0837-5.
5. Ilyasova R.R., Gilimhanova A.A., Shakirova R.A. et al. Sintez i izuchenie sorbtsionnykh svoistv submikronnogo geksatsianoferrata (II) zheleza (III) po otnosheniyu k ionam medi (II) i serebra (I) [Synthesis and study of sorption properties of submicron hexacyanoferrate (II) iron (III) with respect to copper (II) and silver (I) ions], Khimicheskaya bezopasnost' [Chemical safety], 2022, vol. 6, issue 1, pp. 132-147. DOI: 10.25514/CHS.2022.1.21008. (In Russian).
6. Agataeva A.A., Jusipbekov U.Zh., Chernyakova R.M. et al. Vliyanie normy geksatsianoferrata zheleza na ego sorbtsionnuyu sposobnost' po otnosheniyu k kationam serebra, indiya i galliya [The effect of the norm of iron hexacyanoferrate on its sorption capacity with respect to silver, indium and gallium cations], Khimicheskii zhurnal Kazakhstana [Chemical Journal of Kazakhstan], 2021, no. 4 (76), pp. 5-14. (In Russian).
7. Karpova E.V., Galushin A.A., Karyakina E.E., Karyakin A.A. Sposob izgotovleniya vysokostabil'nogo pokrytiya sensora na peroksid vodoroda [Method of manufacturing a highly stable sensor coating on hydrogen peroxide]. Patent RF, no 2703316, 2019. (In Russian).
8. Yang S., Li G., Wang G. et al. A novel nonenzymatic H2O2 sensor based on cobalt hexacyanoferrate nanoparticles and graphene composite modified electrode, Sensors and Actuators B: Chemical, 2015, vol. 208, pp. 593-599. DOI: 10.1016/j.snb.2014.11.055.
9. Zolotukhina E.V., Vorotyntsev M.A., Bezverkhyy I.S. et al. Composite materials based on prussian blue nanoparticles and polypyrrole for design of a highly stable sensor for hydrogen peroxide, Doklady Physical Chemistry, 2012, vol. 444, issue 1, pp. 75-78. DOI: 10.1134/S0012501612050016.
10. Lisowska-Oleksiak A., Wilamowska M., Jasulaitiené V. Organic–inorganic composites consisted of poly (3, 4-ethylenedioxythiophene) and Prussian Blue analogues, Electrochimica acta, 2011, vol. 56, issue 10, pp. 3626-3632. DOI: 10.3390/s7102446.
11. Kondrat’eva E.S., Evseev A.K., Tsarkova T.G. Razrabotka elektrokhimicheskoj metodiki opredeleniya antioksidantnoj aktivnosti plazmy krovi na steklouglerode, modifitsirovannom geksatsianoferratom kobal'ta [Development of an electrochemical technique for determining the antioxidant activity of blood plasma on glass carbon modified with cobalt hexacyanoferrate], Uspekhi v khimii i khimicheskoi tekhnologii [Advances in chemistry and chemical technology], 2010, vol. 24, issue 9(114), pp. 43-47. (In Russian).
12. Karyakin A.A., Karyakina E.E., Mokrushina A.V., Andreev E.A. Sposob izgotovleniya mikrobiosensora dlya
opredeleniya glyukozy ili laktata [Method of manufacturing a microbiosensor for the determination of glucose or
lactate]. Patent RF, no 2580288, 2016. (In Russian).
13. Oglou R.C., Ghobadi T.G.U., Ozbay E., Karadas F. Electrodeposited cobalt hexacyanoferrate electrode as a non-enzymatic glucose sensor under neutral conditions, Analytica Chimica Acta, 2021, vol. 1188, a rt. no. 339188, 11 p. DOI: 10.1016/j.aca.2021.339188.
14. Sattarahmady N., Heli H. An electrocatalytic transducer for l-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core–shell structure, Analytical biochemistry, 2011, vol. 409, issue 1, pp. 74-80. DOI: 10.1016/j.ab.2010.09.032.
15. Raoof J.B., Ojani R., Baghayeri M.A. A selective sensor based on a glassy carbon electrode modified with carbon nanotubes and ruthenium oxide/hexacyanoferrate film for simultaneous determination of ascorbic acid, epinephrine and uric acid, Analytical Methods, 2011, vol. 3, issue 10, pp. 2367-2373. DOI: 10.1039/C1AY05305A.
16. Shaidarova L.G., Davletshina L.N., Druzhina E.A., Budnikov G.K. Opredelenie glyukozy po elektrokataliticheskomu otkliku grafitovogo elektroda, modifitsirovannogo plenkoj geksatsianoferrata (II) nikelya (III) [Glucose determination by electrocatalytic response of graphite electrode modified with nickel (III) hexacyanoferrate (II) film], Uchenye zapiski Kazanskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki [Scientific notes of Kazan State University. Series: Natural Sciences], 2005, vol. 147, issue 3, pp. 73-80. (In Russian).
17. Yasnaya M.A., Blinov A.V., Blinova A.A. et al. Opredelenie optimal'nykh rezhimov izmereniya razmera kolloidnykh chastits metodami fotonno-korrelyatsionnoj i akusticheskoj spektroskopii [Determination of optimal modes for measuring the size of colloidal particles by photon-correlation spectroscopy and acoustic spectroscopy], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 232-242. DOI: 10.26456/pcascnn/2020.12.232. (In Russian).
18. Blinov A.V., Blinova A.A., Khramtsov A.G. et al. Analysis of the dispersed composition of milk using photon correlation spectroscopy, Journal of Food Composition and Analysis, 2022, vol. 108, art. no. 104414, 9 p. . DOI: 10.1016/j.jfca.2022.104414.
19. Kuleshov D.S., Blinov A.V., Blinova A.A. et al. Sravnenie effektivnosti razlichnykh detektorov skaniruyushchego elektronnogo mikroskopa «Mira-LMH» dlya issledovaniya mikrostruktury nanomaterialov [Comparison of the efficiency of different detectors of the scanning electronic microscope «Mira-LMH» for studying microstructure of nanomaterials], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, pp. 250-262. DOI: 10.26456/pcascnn/2021.13.250. (In Russian).
20. Sverdlik G.I., Ataeva A.Yu., Ataev A.R. et al. Analiz metodov issledovaniya razmerov nanochastits [Analysis of methods for studying the size of nanoparticles], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2021, issue 13, рр. 358-367. DOI: 10.26456/pcascnn/2021.13.358. (In Russian).
21. Larin V.S., Korovushkin V.V., Morchenko A.T. et al. Rentgenovskie i myossbauerovskie issledovaniya amorfnykh i kristallizovannykh ferromagnitnykh mikroprovodov [X-ray and Mossbauer studies of amorphous and crystallized ferromagnetic microconductors], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2016, issue 8, pp. 214-224. (In Russian).
22. Blinov A.V., Gvozdenko A.A., Kravtsov A.A. et al. Synthesis of nanosized manganese methahydroxide stabilized by cystine, Materials Chemistry and Physics, 2021, vol. 265, art. no. 124510, 10 p. DOI: 10.1016/j.matchemphys.2021.124510. (In Russian).

⇐ Prevoius journal article | Content | Next journal article ⇒