Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials
Founded at 2009

Synthesis and physicochemical study of the cerium and cefazolin metal complex

T.V. Kryukov, M.A. Feofanova, M.I. Skobin, A.I. Ivanova

Tver State University

DOI: 10.26456/pcascnn/2021.13.881

Original article

Abstract: In this work, a team of authors obtained and isolated in solid form a metal complex compound by the interaction of aqueous solutions of trivalent cerium chloride and sodium salt of cefazolin. Its elemental composition was determined using the X-ray spectral electron probe analysis. The thermal characteristics of this compound, the temperature of its decomposition, the composition and the method of coordination of the inner sphere of this metal complex were clarified by the methods of thermogravimetry, differential scanning calorimetry and IR spectroscopy. Based on the data obtained, the inner sphere of the metal complex contains three molecules of cefazolin and three molecules of inner-sphere water. The composition of the inner sphere corresponds to the formula [CeCzl3(H2O)3]. Taking into account IR spectroscopy data, the authors concluded that the most likely way of coordination of cefazolin to the central ion is through the amide and carboxyl groups.

Keywords: coordination compounds of rare earth elements, cefazolin, cefazolin complexes, cephalosporins

  • Timofey V. Kryukov – Leading Engineer, Department of Inorganic and Analytical Chemistry, Tver State University
  • Mariana A. Feofanova – Ph. D., Docent, Head of the Department of Inorganic and Analytical Chemistry, Dean of the Chemical and Technology Department, Tver State University
  • Mikhail I. Skobin – Leading Engineer, Department of Inorganic and Analytical Chemistry, Tver State University
  • Alexandra I. Ivanova – Ph. D, Docent, Department of Applied Physics, Tver State University


Kryukov, T.V. Synthesis and physicochemical study of the cerium and cefazolin metal complex / T.V. Kryukov, M.A. Feofanova, M.I. Skobin, A.I. Ivanova // Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials. – Tver: TSU, 2021. — I. 13. — P. 881-889. DOI: 10.26456/pcascnn/2021.13.881. (In Russian).

Full article (in Russian): download PDF file


1. Ivanov V.K., Scherbakov A.B, Usatenko A.V. Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide, Russian Chemical Reviews, 2009, vol. 78, issue 9, pp. 855-871. DOI: 10.1070/RC2009v078n09ABEH004058.
2. Nazarenko M.A., Ivanin S.N., Oflidi A.I. et al. Synthesis and physicochemical properties of the coordination compound of gadolinium (III) with 2,5– dimethoxybenzoic acid, Russian Journal of Physical Chemistry A, 2021, vol. 95, issue 9, pp. 1948–1954. DOI: 10.1134/S0036024421090181.
3. Sato M.R., da Silva P.B., de Souza R.A., dos Santos K.C. et. al. Recent advances in nanoparticle carriers for coordination complexes, Current Topics in Medicinal Chemistry, 2015, vol. 15, issue. 4, pp. 287-297. DOI: 10.2174/1568026615666150108145614.
4. Kochergina L.A., Emel'yanov A.V. Thermodynamics of the formation of complexes of copper (II) ions and glycylglycine in aqueous solutions at 298 K according to calorimetry data, Russian Journal of Physical Chemistry A, 2015, vol. 89, issue 4, pp. 580-585. DOI: 10.1134/S0036024415040135.
5. Anacona J.R., Calvo G., Camus J. Tetradentate hydrazone metal complexes derived from cefazolin and 2,6 -diacetylpyridine hydrazide: synthesis, characterization, and antibacterial activity, Monatshefte für Chemie - Chemical Monthly, 2016. vol. 147, issue 4, pp. 725-733. DOI: 10.1007/s00706-015-1585-6.
6. Sekhon B.S. Metalloantibiotics and antibiotic mimics - an overview, Journal of Pharmaceutical Education and Research, 2010, vol. 1, no. 1, pp. 1-20.
7. Anacona J.R., Alvarez P. Synthesis and antibacterial activity of metal complexes of cefazolin, Transition Metal Chemistry, 2002, vol. 27, issue 8, pp. 856-860. DOI: 10.1023/A:1021376519769.
8. Alekseev V.G. Metal complexes of penicillins and cephalosporins (review), Pharmaceutical Chemistry Journal, 2012, vol. 45, issue 11, pp. 679-697. DOI 10.1007/s11094-012-0703-6.
9. Alekseev V.G., Sokolova E.M. Experimental study and computer modeling of complexation of Ni (II) and Cu (II) with ceftazidime, Russian Journal of Inorganic Chemistry, 2016, vol. 61, issue 4, pp. 531-534. DOI: 10.1134/S0036023616040021.
10. Anacona, J.R., Rodriguez I. Synthesis and antibacterial activity of cephalexin metal complexes, Journal of Coordination Chemistry, 2004, vol. 57, issue. 15, pp. 1263-1269. DOI: 10.1080/00958970410001721411.
11. Coskun E. Electrochemical, spectroscopic and computational studies on complexation of oxacillin with Cu (II) and Co (II) ions. Synthesis and ligand hydrolysis, International Journal of Electrochemical Science, 2017, vol. 12, issue 1, pp. 9364-9377. DOI: 10.20964/2017.10.43.
12. Bebawy L., Kelani K., Fattah L.A. Fluorimetric determination of some antibiotics in raw material and dosage forms through ternary complex formation with terbium (Tb3+), Journal of Pharmaceutical and Biomedical Analysis, 2003, vol. 32, issue. 6, pp. 1219-1226. DOI: 10.1016/s0731-7085(03)00161-4.
13. Pourret O, Davranche M., Gruau G., Dia A. Rare earth elements complexation with humic acid, Chemical Geology, 2007, vol. 243, issue 1-2, pp. 128-141. DOI: 10.1016/j.chemgeo.2007.05.018.
14. Kulapina E.G., Snesarev S.V. Potentiometric sensors based on organic ion exchangers of tetraalkylammonium and silver (I) complexes with ampicillin, oxacillin, cefazolin, Journal of Analytical Chemistry, 2012, vol. 67, issue 2, pp. 163-167. DOI: 10.1134/S1061934811120069.
15. Přibil R. Analytical applications of EDTA acid and related compounds, International Series of Monographs on Analytical Chemistry, vol. 52. Oxford, New York, Toronto, Sydney, Braunschweig, Pergamon Press Ltd., 1972, 368 p. DOI: 10.1016/C2013-0-02416-4.
16. Sakharova Yu.G., Borisova G.M. Termicheskaya ustojchivost' tiokarbamidnykh soedinenij neodima, samariya, evropiya i gadoliniya [Thermal stability of thiocarbamide compounds of neodymium, samarium, europium and gadolinium], Zhurnal neorganicheskoi khimii [Russian Journal of Inorganic Chemistry], 1976, vol. 21, issue 1, pp. 76-83. (In Russian).
17. Pedroso T.M., Salgado H.R.N. Methods for qualitative analysis of cefazolin sodium raw material and pharmaceutical product, Physical Chemistry, 2013, vol. 3, issue. 2, pp. 29-38. DOI: 10.5923/j.pc.20130302.01
18. Masoud M.S., Ali A.E., Sharaf R.Y. Physicochemical studies of some biologically active metal complexes of cefazolin antibiotics, Journal of Chemical and Pharmaceutical Research, 2020, vol. 12, issue 9, pp. 42-52.
19. Nakamoto К. Infrared and Raman spectra of inorganic and coordination compounds, Part B: applications in coordination, organometallic, and bioinorganic chemistry, 6th ed. Hoboken, New Jersey, John Wiley & Sons, Inc., 2009, 424 p. DOI: 10.1002/9780470405888.

⇐ Prevoius journal article | Content | Next journal article ⇒